On the Expressiveness and Decidability of Higher-Order Process Calculi

Article history: Received 19 February 2010 Revised 3 June 2010 Available online 16 October 2010

[1]  Emil L. Post A variant of a recursively unsolvable problem , 1946 .

[2]  John C. Shepherdson,et al.  Computability of Recursive Functions , 1963, JACM.

[3]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[4]  Faron Moller,et al.  Axioms for concurrency , 1989 .

[5]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[6]  Bent Thomsen,et al.  A calculus of higher order communicating systems , 1989, POPL '89.

[7]  Bent Thomsen,et al.  Calculi for higher order communicating systems , 1990 .

[8]  Unique decomposition of processes , 1990, Bull. EATCS.

[9]  Robin Milner,et al.  Barbed Bisimulation , 1992, ICALP.

[10]  Davide Sangiorgi,et al.  Expressing mobility in process algebras : first-order and higher-order paradigms , 1993 .

[11]  Davide Sangiorgi The Lazy Lambda Calculus in a Concurrency Scenario , 1994, Inf. Comput..

[12]  de Ng Dick Bruijn,et al.  Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[13]  Faron Moller,et al.  Decidable Subsets of CCS , 1994, Comput. J..

[14]  Nobuko Yoshida,et al.  On Reduction-Based Process Semantics , 1995, Theor. Comput. Sci..

[15]  D. Sangiorgi - calculus , internal mobility , and agent-passing calculi , 1995 .

[16]  Petr Jancar Undecidability of Bisimilarity for Petri Nets and Some Related Problems , 1995, Theor. Comput. Sci..

[17]  Douglas J. Howe Proving Congruence of Bisimulation in Functional Programming Languages , 1996, Inf. Comput..

[18]  Davide Sangiorgi,et al.  Bisimulation for Higher-Order Process Calculi , 1994, Inf. Comput..

[19]  Mads Dam,et al.  From Higher-Order pi-Calculus to pi-Calculus in the Presence of Static Operators , 1998, CONCUR.

[20]  Davide Sangiorgi,et al.  On Bisimulations for the Asynchronous pi-Calculus , 1996, Theor. Comput. Sci..

[21]  Cheng-Shang Chang Calculus , 2020, Bicycle or Unicycle?.

[22]  Witold Charatonik,et al.  The Decidability of Model Checking Mobile Ambients , 2001, CSL.

[23]  Philippe Schnoebelen Bisimulation and Other Undecidable Equivalences for Lossy Channel Systems , 2001, TACS.

[24]  Frank D. Valencia,et al.  On the expressive power of temporal concurrent constraint programming languages , 2002, PPDP '02.

[25]  Maurizio Gabbrielli,et al.  Replication vs. Recursive Definitions in Channel Based Calculi , 2003, ICALP.

[26]  Maria Grazia Vigliotti,et al.  Electoral Systems in Ambient Calculi , 2004, FoSSaCS.

[27]  Thomas T. Hildebrandt,et al.  Bisimulation Congruences for Homer a calculus of Higher-order mobile embedded resources , 2004 .

[28]  Alan Schmitt,et al.  The Kell Calculus: A Family of Higher-Order Distributed Process Calculi , 2004, Global Computing.

[29]  Nadia Busi,et al.  On the expressive power of movement and restriction in pure mobile ambients , 2004, Theor. Comput. Sci..

[30]  Agostino Dovier,et al.  An efficient algorithm for computing bisimulation equivalence , 2004, Theor. Comput. Sci..

[31]  Bent Thomsen,et al.  Plain CHOCS A second generation calculus for higher order processes , 2005, Acta Informatica.

[32]  Julian Rathke,et al.  Contextual equivalence for higher-order pi-calculus revisited , 2005, Log. Methods Comput. Sci..

[33]  Thomas T. Hildebrandt,et al.  Extending Howe's Method to Early Bisimulations for Typed Mobile Embedded Resources with Local Names , 2005, FSTTCS.

[34]  Zining Cao More on Bisimulations for Higher Order pi-Calculus , 2006, FoSSaCS.

[35]  Antonín Kucera,et al.  Equivalence-checking on infinite-state systems: Techniques and results , 2002, Theory and Practice of Logic Programming.

[36]  Damien Pous,et al.  A Distribution Law for CCS and a New Congruence Result for the pi-Calculus , 2007, FoSSaCS.

[37]  Davide Sangiorgi,et al.  Environmental Bisimulations for Higher-Order Languages , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[38]  Thomas T. Hildebrandt,et al.  On Encoding the π-calculus in Higher-Order Calculi , 2008 .

[39]  Damien Pous,et al.  A Distribution Law for CCS and a New Congruence Result for the p-calculus , 2006, Log. Methods Comput. Sci..

[40]  Maria Grazia Vigliotti,et al.  Symmetric electoral systems for ambient calculi , 2008, Inf. Comput..

[41]  Hans Hüttel,et al.  Decidable Fragments of a Higher Order Calculus with Locations , 2009, EXPRESS.

[42]  On the Expressiveness and Decidability of Higher-Order Process Calculi , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.

[43]  Raheel Ahmad,et al.  The π-Calculus: A theory of mobile processes , 2008, Scalable Comput. Pract. Exp..

[44]  Daniele Gorla On the Relative Expressive Power of Calculi for Mobility , 2009, MFPS.

[45]  Alan Schmitt,et al.  Normal Bisimulations in Calculi with Passivation , 2009, FoSSaCS.

[46]  Alan Schmitt,et al.  Howe's Method for Calculi with Passivation , 2009, CONCUR.

[47]  Gianluigi Zavattaro,et al.  On the Expressiveness of Forwarding in Higher-Order Communication , 2009, ICTAC.

[48]  Maurizio Gabbrielli,et al.  On the expressive power of recursion, replication and iteration in process calculi , 2009, Mathematical Structures in Computer Science.

[49]  Ivan Lanese,et al.  On the Expressiveness of Polyadic and Synchronous Communication in Higher-Order Process Calculi , 2010, ICALP.

[50]  Jorge Andres Perez-Parra Higher-Order Concurrency: Expressiveness and Decidability Results , 2010 .

[51]  Proof of Lemma 3 , 2022 .