Impact of humidity on the removal of volatile organic compounds over Fe loaded TiO2 under visible light irradiation: Insight into photocatalysis mechanism by operando DRIFTS

[1]  F. Haghighat,et al.  Carbon-doped TiO2 film to enhance visible and UV light photocatalytic degradation of indoor environment volatile organic compounds , 2020 .

[2]  S. Kim,et al.  Annealing Temperature-Dependent Effects of Fe-Loading on the Visible Light-Driven Photocatalytic Activity of Rutile TiO2 Nanoparticles and Their Applicability for Air Purification , 2020, Catalysts.

[3]  J. Xiong,et al.  CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production , 2020 .

[4]  Il Hee Kim,et al.  Reduction of NO by CO catalyzed by Fe-oxide/Al2O3: Strong catalyst-support interaction for enhanced catalytic activity , 2020 .

[5]  Cheolwoo Park,et al.  Visible light-responsive Fe-loaded TiO2 photocatalysts for total oxidation of acetaldehyde: Fundamental studies towards large-scale production and applications , 2020 .

[6]  J. Roux,et al.  Humidity impact on photo-catalytic degradation: Adsorption behavior simulations and catalytic reaction mechanisms for main gaseous pollutants in papermaking industry , 2020 .

[7]  J. Xiong,et al.  Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction , 2019, Journal of Alloys and Compounds.

[8]  Alireza Haghighat Mamaghani,et al.  Photocatalytic oxidation of MEK over hierarchical TiO2 catalysts: Effect of photocatalyst features and operating conditions , 2019, Applied Catalysis B: Environmental.

[9]  Il Hee Kim,et al.  TOF-SIMS Analysis Using Bi3+ as Primary Ions on Au Nanoparticles Supported by SiO2/Si: Providing Insight into Metal–Support Interactions , 2019, ACS omega.

[10]  Y. D. Kim,et al.  Hydrophilic surface modification of TiO2 to produce a highly sustainable photocatalyst for outdoor air purification , 2019, Applied Surface Science.

[11]  Jae Hwan Jeong,et al.  Adsorption and Oxidative Desorption of Acetaldehyde over Mesoporous FexOyHz/Al2O3 , 2019, ACS omega.

[12]  J. Xiong,et al.  Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C-TiO2 direct Z-scheme heterojunctions , 2019, Chinese Journal of Catalysis.

[13]  F. Haghighat,et al.  Photocatalytic oxidation of volatile organic compounds for indoor environment applications: Three different scaled setups , 2019, Chemical Engineering Journal.

[14]  H. Cho,et al.  Surface Modification of TiO2 for Obtaining High Resistance against Poisoning during Photocatalytic Decomposition of Toluene , 2018, Catalysts.

[15]  Il Hee Kim,et al.  Secondary ion mass spectrometry (SIMS) with Bi3+ primary ions as a sensitive probe of surface structures of heterogeneous catalysts , 2018, International Journal of Mass Spectrometry.

[16]  F. Haghighat,et al.  Effect of surface fluorination of P25-TiO2 on adsorption of indoor environment volatile organic compounds , 2018, Chemical Engineering Journal.

[17]  Alireza Haghighat Mamaghani,et al.  Photocatalytic degradation of VOCs on various commercial titanium dioxides: Impact of operating parameters on removal efficiency and by-products generation , 2018, Building and Environment.

[18]  F. Haghighat,et al.  TiO2 photocatalyst for removal of volatile organic compounds in gas phase - A review , 2018 .

[19]  Il Hee Kim,et al.  Dynamic secondary ion mass spectroscopy of Au nanoparticles on Si wafer using Bi 3 + as primary ion coupled with surface etching by Ar cluster ion beam : The effect of etching conditions on surface structure , 2018 .

[20]  Y. D. Kim,et al.  Influence of humidity on the removal of volatile organic compounds using solid surfaces , 2017 .

[21]  Il Hee Kim,et al.  Influence of humidity on the photo-catalytic degradation of acetaldehyde over TiO2 surface under UV light irradiation , 2017 .

[22]  Xingguo Li,et al.  Photocatalytic Formaldehyde Oxidation over Plasmonic Au/TiO2 under Visible Light: Moisture Indispensability and Light Enhancement , 2017 .

[23]  M. S. Kamal,et al.  Catalytic oxidation of volatile organic compounds (VOCs) – A review , 2016 .

[24]  Xiao-Qing Deng,et al.  Inherent rate constants and humidity impact factors of anatase TiO2 film in photocatalytic removal of formaldehyde from air , 2015 .

[25]  M. Fernández-García,et al.  Acetaldehyde degradation under UV and Visible irradiation using CeO2-TiO2 composite systems: Evaluation of the photocatalytic efficiencies , 2014 .

[26]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[27]  Wei-szu Liu,et al.  The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts , 2014 .

[28]  W. Kwapinski,et al.  ToF-SIMS as a versatile tool to study the surface properties of silica supported cobalt catalyst for Fischer–Tropsch synthesis , 2014 .

[29]  Xiaodong Chen,et al.  Heterogeneous visible light photocatalysis for selective organic transformations. , 2014, Chemical Society reviews.

[30]  Myung-Geun Jeong,et al.  Humidity effect on photocatalytic activity of TiO2 and regeneration of deactivated photocatalysts , 2013 .

[31]  Xiangfeng Duan,et al.  Progress, challenge and perspective of heterogeneous photocatalysts. , 2013, Chemical Society reviews.

[32]  Akira Fujishima,et al.  Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification , 2012 .

[33]  A. Fujishima,et al.  TiO2 photocatalysis: Design and applications , 2012 .

[34]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[35]  G. Marcì,et al.  A survey of photocatalytic materials for environmental remediation. , 2012, Journal of hazardous materials.

[36]  Y. D. Kim,et al.  Oxidation of Toluene on Bare and TiO2-Covered NiO-Ni(OH)2 Nanoparticles , 2011 .

[37]  M. Anderson,et al.  Operando FTIR study of the photocatalytic oxidation of methylcyclohexane and toluene in air over TiO2–ZrO2 thin films: Influence of the aromaticity of the target molecule on deactivation , 2011 .

[38]  Yaron Paz,et al.  Application of TiO2 photocatalysis for air treatment: Patents’ overview , 2010 .

[39]  L. Österlund,et al.  Adsorption and Photoinduced Decomposition of Acetone and Acetic Acid on Anatase, Brookite, and Rutile TiO2 Nanoparticles , 2010 .

[40]  S. Sakai,et al.  Effect of H2O vapor addition on the photocatalytic oxidation of ethanol, acetaldehyde and acetic acid in the gas phase on TiO2 semiconductor powders , 2010 .

[41]  J. M. Coronado,et al.  Development of alternative photocatalysts to TiO2: Challenges and opportunities , 2009 .

[42]  Guohua Chen,et al.  Photoelectrocatalytic materials for environmental applications , 2009 .

[43]  Jinlong Zhang,et al.  Preparation and characterization of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants , 2009 .

[44]  Mohamad Sleiman,et al.  Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization , 2009 .

[45]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[46]  Jo Dewulf,et al.  Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2 , 2008 .

[47]  Abdul Halim Abdullah,et al.  Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide : A review of fundamentals, progress and problems , 2008 .

[48]  M. Cossi,et al.  Adsorption of CH3 COOH on TiO2: IR and theoretical investigations , 2007 .

[49]  M. Ziolek,et al.  The role of chlorine in the generation of catalytic active species located in Au-containing MCM-41 materials , 2007 .

[50]  Y. Xian,et al.  Fabrication of TiO2/Ti electrode by laser-assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue. , 2007, Journal of hazardous materials.

[51]  Eric Hu,et al.  Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst , 2006 .

[52]  Xiaohong Hu,et al.  Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor. , 2006, Chemosphere.

[53]  P. Cloirec,et al.  TiO2 coating types influencing the role of water vapor on the photocatalytic oxidation of methyl ethyl ketone in the gas phase , 2005 .

[54]  J. Rasko,et al.  Adsorption and surface reactions of acetaldehyde on alumina-supported noble metal catalysts , 2005 .

[55]  C. Yuan,et al.  Kinetic modeling of promotion and inhibition of temperature on photocatalytic degradation of benzene vapor , 2005 .

[56]  V. Murugesan,et al.  Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. , 2004, Water research.

[57]  J Baeyens,et al.  Catalytic combustion of volatile organic compounds. , 2004, Journal of hazardous materials.

[58]  W. Husinsky,et al.  Modelling of cluster emission from metal surfaces under ion impact , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[59]  C. Fan,et al.  Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode. , 2002, Water research.

[60]  M. Calvo,et al.  Photooxidation of organic mixtures on biased TiO2 films. , 2001, Environmental science & technology.

[61]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[62]  Chunlei Yang,et al.  PHOTOCATALYTIC ACTIVITY OF WOX-TIO2 UNDER VISIBLE LIGHT IRRADIATION , 2001 .

[63]  J. Herrmann,et al.  Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants , 1999 .

[64]  Nelson Cardona-Martínez,et al.  Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene , 1998 .

[65]  N. N. Lichtin,et al.  Oxidative photocatalytic degradation of benzene vapor over TiO2 , 1998 .

[66]  Richard D. Noble,et al.  Kinetics of the Oxidation of Trichloroethylene in Air via Heterogeneous Photocatalysis , 1995 .

[67]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[68]  R. T. Brown,et al.  TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. , 1995, Environmental science & technology.

[69]  M. Jaroniec,et al.  Hierarchical photocatalysts. , 2016, Chemical Society reviews.

[70]  Immanuel Gadaczek,et al.  Surface structures and thermodynamics of low-index of rutile, brookite and anatase – A comparative DFT study , 2014 .

[71]  Eileen M. Skelly Frame,et al.  Introduction to Spectroscopy , 2008, Instrumental Analytical Chemistry.

[72]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .