The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system

[1]  M. Ehn,et al.  Highly Oxygenated Molecules from Atmospheric Autoxidation of Hydrocarbons: A Prominent Challenge for Chemical Kinetics Studies , 2017 .

[2]  Florian A. Potra,et al.  The kinetic preprocessor KPP*/a software environment for solving chemical kinetics , 2002 .

[3]  H. Kjaergaard,et al.  Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol , 2019, Chemical reviews.

[4]  Glenn Rolph,et al.  Real-time Environmental Applications and Display sYstem: READY , 2017, Environ. Model. Softw..

[5]  R. Rogers,et al.  A short course in cloud physics , 1976 .

[6]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[7]  E. Nilsson,et al.  Laboratory simulations and parameterization of the primary marine aerosol production , 2003 .

[8]  H. Hakola,et al.  Chemodiversity of a Scots pine stand and implications for terpene air concentrations , 2012 .

[9]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[10]  M. Rissanen,et al.  Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes – deduced from structure–product relationships , 2015 .

[11]  R. A. Cox,et al.  Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations , 2015 .

[12]  P. Rasch,et al.  Recent advances in understanding secondary organic aerosol: Implications for global climate forcing , 2017 .

[13]  Edward Charles Fortner,et al.  Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications , 2014 .

[14]  Douglas R. Worsnop,et al.  The contribution of organics to atmospheric nanoparticle growth , 2012 .

[15]  T. Kurtén,et al.  What Is Required for Highly Oxidized Molecules To Form Clusters with Sulfuric Acid? , 2017, The journal of physical chemistry. A.

[16]  D. Worsnop,et al.  Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications , 2015, Proceedings of the National Academy of Sciences.

[17]  M. Jenkin,et al.  The MCM v3.3.1 degradation scheme for isoprene , 2015 .

[18]  A. Watson,et al.  In situ evaluation of air‐sea gas exchange parameterizations using novel conservative and volatile tracers , 2000 .

[19]  Qi Zhang,et al.  An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol , 2011 .

[20]  M. Rissanen,et al.  α-Pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O:C Ratios. , 2016, The journal of physical chemistry. A.

[21]  W. Landman Climate change 2007: the physical science basis , 2010 .

[22]  H. Kjaergaard,et al.  A large source of low-volatility secondary organic aerosol , 2014, Nature.

[23]  L. Johansson,et al.  Emission factors of SO 2 , NO x and particles from ships in Neva Bay from ground-based and helicopter-borne measurements and AIS-based modeling , 2014 .

[24]  J. Seinfeld,et al.  Ion-induced nucleation of pure biogenic particles , 2016, Nature.

[25]  Kenneth A. Smith,et al.  Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles , 2000 .

[26]  P. Winkler,et al.  JournalofGeophysicalResearch : Atmospheres Causes and importance of new particle formation in the present-day and preindustrial atmospheres , 2017 .

[27]  Mattias Hallquist,et al.  Size‐resolved particle emission factors for individual ships , 2011 .

[28]  M. Jenkin,et al.  The tropospheric degradation of volatile organic compounds: a protocol for mechanism development , 1997 .

[29]  Peter Jamieson,et al.  READY , 2019, Postgraduate medicine.

[30]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[31]  D. Worsnop,et al.  Rapid autoxidation forms highly oxidized RO2 radicals in the atmosphere. , 2014, Angewandte Chemie.

[32]  G. Mann,et al.  Global atmospheric particle formation from CERN CLOUD measurements , 2016, Science.

[33]  P. Palmer,et al.  Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) , 2006 .

[34]  A. Klamt The COSMO and COSMO‐RS solvation models , 2011 .

[35]  Katrin Fuhrer,et al.  Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. , 2006, Analytical chemistry.

[36]  M. Jacobson Fundamentals of Atmospheric Modeling: Contents , 1998 .

[37]  Mikael Ehn,et al.  Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Julich plant atmosphere chamber , 2015 .

[38]  A. Matsunaga,et al.  Gas-Wall Partitioning of Organic Compounds in a Teflon Film Chamber and Potential Effects on Reaction Product and Aerosol Yield Measurements , 2010 .

[39]  B. Grisogono,et al.  Parameterization of vertical diffusion and the atmospheric boundary layer height determination in the EMEP model , 2009 .

[40]  H. Kjaergaard,et al.  Computational Study of Hydrogen Shifts and Ring-Opening Mechanisms in α-Pinene Ozonolysis Products. , 2015, The journal of physical chemistry. A.

[41]  P. Roldin Peroxy Radical Autoxidation Mechanism (PRAM) , 2019 .

[42]  H. Kjaergaard,et al.  Effects of chemical complexity on the autoxidation mechanisms of endocyclic alkene ozonolysis products: from methylcyclohexenes toward understanding α-pinene. , 2015, The journal of physical chemistry. A.

[43]  T. Petäjä,et al.  Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization , 2016 .

[44]  T. Wallington,et al.  The atmospheric chemistry of alkoxy radicals. , 2003, Chemical reviews.

[45]  J. F. Müller,et al.  Low-volatility poly-oxygenates in the OH-initiated atmospheric oxidation of alpha-pinene: impact of non-traditional peroxyl radical chemistry. , 2007, Physical chemistry chemical physics : PCCP.

[46]  M. Ramonet,et al.  Radon activity in the lower troposphere and its impact on ionization rate: A global estimate using different radon emissions , 2011 .

[47]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[48]  M. Mishurov,et al.  Modeling the role of highly oxidized multifunctional organic molecules for the growth of new particles over the boreal forest region , 2016 .

[49]  F. Yu,et al.  Impact of temperature dependence on the possible contribution of organics to new particle formation in the atmosphere , 2016 .

[50]  Z. Klimont,et al.  Continental anthropogenic primary particle number emissions , 2016 .

[51]  I. Riipinen,et al.  The role of low-volatility organic compounds in initial particle growth in the atmosphere , 2016, Nature.

[52]  Leiming Zhang,et al.  A size-segregated particle dry deposition scheme for an atmospheric aerosol module , 2001 .

[53]  Steven Compernolle,et al.  EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions , 2011 .

[54]  J. Thornton,et al.  Estimating the saturation vapor pressures of isoprene oxidation products C5H12O6 and C5H10O6 using COSMO-RS , 2018, Atmospheric Chemistry and Physics.

[55]  W. Asher,et al.  SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds , 2007 .

[56]  A. Arneth,et al.  Development and evaluation of the aerosol dynamics and gas phase chemistry model ADCHEM , 2010 .

[57]  K. Lehtinen,et al.  Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation , 2007 .

[58]  H. Kjaergaard,et al.  The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene. , 2014, Journal of the American Chemical Society.

[59]  Mikko Sipilä,et al.  Highly Oxidized Multifunctional Organic Compounds Observed in Tropospheric Particles: A Field and Laboratory Study. , 2015, Environmental science & technology.

[60]  R. J. Thomson,et al.  Highly Oxygenated Multifunctional Compounds in α-Pinene Secondary Organic Aerosol. , 2017, Environmental science & technology.

[61]  A. M. Booth,et al.  New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coeffi , 2011 .

[62]  H. Kjaergaard,et al.  Hydroxyl radical-induced formation of highly oxidized organic compounds , 2016, Nature Communications.

[63]  P. Keronen,et al.  Simulations of atmospheric OH, O 3 and NO 3 reactivities within and above the boreal forest , 2015 .

[64]  H. Vehkamäki,et al.  Free energy barrier in the growth of sulfuric acid-ammonia and sulfuric acid-dimethylamine clusters. , 2013, The Journal of chemical physics.

[65]  G. Mann,et al.  Large contribution of natural aerosols to uncertainty in indirect forcing , 2013, Nature.

[66]  A. Prévôt,et al.  Labile Peroxides in Secondary Organic Aerosol , 2016 .

[67]  L. R. Koenig,et al.  A Short Course in Cloud Physics , 1979 .

[68]  M. Jenkin,et al.  Estimation of rate coefficients and branching ratios for reactions of organic peroxy radicals for use in automated mechanism construction , 2019, Atmospheric Chemistry and Physics.

[69]  J. Löndahl,et al.  Aerosol ageing in an urban plume - implication for climate , 2010 .

[70]  C E Kolb,et al.  Guest Editor: Albert Viggiano CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER , 2022 .

[71]  H. Hakola,et al.  Atmospheric Chemistry and Physics Technical Note: Quantitative Long-term Measurements of Voc Concentrations by Ptr-ms – Measurement, Calibration, and Volume Mixing Ratio Calculation Methods , 2022 .

[72]  Albert Porcar-Castell,et al.  Seasonal variation in boreal pine forest albedo and effects of canopy snow on forest reflectance , 2012 .

[73]  R. Derwent,et al.  Atmospheric Chemistry and Physics Protocol for the Development of the Master Chemical Mechanism, Mcm V3 (part B): Tropospheric Degradation of Aromatic Volatile Organic Compounds , 2022 .

[74]  J. Seinfeld,et al.  Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles , 2014, Science.

[75]  B. Rosati,et al.  Effect of temperature on the formation of highly oxygenated organic molecules (HOMs) from alpha-pinene ozonolysis , 2019, Atmospheric Chemistry and Physics.

[76]  I. Riipinen,et al.  How do organic vapors contribute to new-particle formation? , 2013, Faraday discussions.

[77]  Dock Bumpers,et al.  Volume 2 , 2005, Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design, 2005..

[78]  H. Kjaergaard,et al.  Atmospheric autoxidation is increasingly important in urban and suburban North America , 2017, Proceedings of the National Academy of Sciences.

[79]  A. Zelenyuk,et al.  Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM , 2014 .

[80]  J. Peeters,et al.  HO(x) radical regeneration in isoprene oxidation via peroxy radical isomerisations. II: experimental evidence and global impact. , 2010, Physical chemistry chemical physics : PCCP.

[81]  D. Topping,et al.  Secondary organic aerosol reduced by mixture of atmospheric vapours , 2019, Nature.

[82]  J. Seinfeld,et al.  Evaluation of a new cloud droplet activation parameterization with in situ data from CRYSTAL‐FACE and CSTRIPE , 2005 .

[83]  P. Hari,et al.  Air pollution control and decreasing new particle formation lead to strong climate warming , 2011 .

[84]  H. Kjaergaard,et al.  Autoxidation of Organic Compounds in the Atmosphere , 2013 .

[85]  M. Kulmala,et al.  Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO2 Radicals and Their Reactions with NO, NO2, SO2, and Other RO2 Radicals. , 2015, The journal of physical chemistry. A.

[86]  A. J. Kettle,et al.  An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean , 2011 .