Neuroimaging Studies of Brain Activation for Language, with an Emphasis on Functional Magnetic Resonance Imaging: A Review

Neuroimaging studies have greatly enhanced the potential to understand brain-behavior relationships in complex behaviors such as language. The method of functional magnetic resonance imaging (fMRI) is one of the newest tools for neuroimaging, and it will in all likelihood contribute substantially to new knowledge about brain activation for language processing. This review summarizes basic information about fMRI, including principles of operation, experimental pitfalls and examples of application to language.

[1]  W Richter,et al.  Limitations of temporal resolution in functional MRI , 1997, Magnetic resonance in medicine.

[2]  J. R. Baker,et al.  Imaging subcortical auditory activity in humans , 1998, Human brain mapping.

[3]  A. L. Leiner,et al.  The human cerebro-cerebellar system: its computing, cognitive, and language skills , 1991, Behavioural Brain Research.

[4]  J. Cacioppo,et al.  Brain imaging and cognitive neuroscience. Toward strong inference in attributing function to structure. , 1996, The American psychologist.

[5]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[6]  J. Lauter Neuroimaging and the Trimodal Brain: Applications for Developmental Communication Neuroscience , 1998, Folia Phoniatrica et Logopaedica.

[7]  B B Biswal,et al.  Acoustic echoplanar scanner noise and pure tone hearing thresholds: the effects of sequence repetition times and acoustic noise rates. , 1998, Journal of computer assisted tomography.

[8]  J. A. Frost,et al.  Function of the left planum temporale in auditory and linguistic processing , 1996, NeuroImage.

[9]  L. Hertz-Pannier,et al.  The noninvasive identification of language function. Neuroimaging and rapid transcranial magnetic stimulation. , 1997, Neurosurgery clinics of North America.

[10]  H A Drury,et al.  Functional specializations in human cerebral cortex analyzed using the visible man surface‐based atlas , 1997, Human brain mapping.

[11]  H. Rusinek,et al.  Functional magnetic resonance imaging of human brain activity in a verbal fluency task , 1998, Journal of neurology, neurosurgery, and psychiatry.

[12]  K. Uğurbil,et al.  Functional magnetic resonance imaging of the human brain , 1997, Journal of Neuroscience Methods.

[13]  Richard S. J. Frackowiak,et al.  Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension , 1995, Cognition.

[14]  P. T. Fox,et al.  Positron emission tomographic studies of the cortical anatomy of single-word processing , 1988, Nature.

[15]  D. Le Bihan,et al.  Noninvasive assessment of language dominance in children and adolescents with functional MRI , 1997, Neurology.

[16]  J P Rauschecker,et al.  Hemispheric specialization for English and ASL: left invariance‐right variability , 1998, Neuroreport.

[17]  S. Petersen,et al.  Neuroimaging studies of word reading. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  G. Mangun,et al.  Tonotopy in human auditory cortex examined with functional magnetic resonance imaging , 1997, Human brain mapping.

[19]  A. Nobre,et al.  The neural system of language: structure and development , 1997, Current Opinion in Neurobiology.

[20]  O Muzik,et al.  Receptive and expressive language activations for sentences: a PET study , 1997, Neuroreport.

[21]  I. Rapin Practitioner review: developmental language disorders: a clinical update. , 1996, Journal of child psychology and psychiatry, and allied disciplines.

[22]  M. Farah,et al.  Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Decety,et al.  The cerebellum participates in mental activity: tomographic measurements of regional cerebral blood flow , 1990, Brain Research.

[24]  Anthony R. McIntosh,et al.  Cognitive Subtractions May Not Add Up: The Interaction between Semantic Processing and Response Mode , 1997, NeuroImage.

[25]  H W Müller-Gärtner,et al.  Imaging techniques in the analysis of brain function and behaviour. , 1998, Trends in biotechnology.

[26]  J. Xiong,et al.  Evaluation of hemispheric dominance for language using functional MRI: A comparison with positron emission tomography , 1998, Human brain mapping.

[27]  David Caplan,et al.  Localization of Syntactic Comprehension by Positron Emission Tomography , 1998, NeuroImage.

[28]  J. Kril,et al.  Language-associated cortical regions are proportionally larger in the female brain. , 1997, Archives of neurology.

[29]  K Tschopp,et al.  Functional Magnetic Resonance Imaging Is a Non-invasive Method for the Detection of Focal Brain Activity at High Spatial Resolution. Acoustic Stimulation Leads to a Blood Oxygenation Level Dependent , 2022 .

[30]  L. Katz,et al.  Sex differences in the functional organization of the brain for language , 1995, Nature.

[31]  V S Caviness,et al.  Functional MRI Localization of Language in a 9-Year-Old Child , 1996, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[32]  D Bavelier,et al.  Cerebral organization for language in deaf and hearing subjects: biological constraints and effects of experience. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S Clarke,et al.  Direct interhemispheric visual input to human speech areas , 1997, Human brain mapping.

[34]  Karl J. Friston,et al.  Subtractions, conjunctions, and interactions in experimental design of activation studies , 1997, Human brain mapping.

[35]  R W Cox,et al.  Software tools for analysis and visualization of fMRI data , 1997, NMR in biomedicine.

[36]  F Isamat,et al.  Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. , 1998, Journal of neurosurgery.

[37]  D. Poeppel,et al.  Sensory mapping in a congenitally deaf subject: MEG and fRMI studies of cross‐modal non‐plasticity , 1997, Human brain mapping.

[38]  E C Wong,et al.  Magnetic resonance imaging of human brain function. Principles, practicalities, and possibilities. , 1997, Neurosurgery clinics of North America.

[39]  D. Poeppel A Critical Review of PET Studies of Phonological Processing , 1996, Brain and Language.

[40]  N. Gordon Speech, language, and the cerebellum. , 1996, European journal of disorders of communication : the journal of the College of Speech and Language Therapists, London.

[41]  Jeffrey R. Binder,et al.  Functional magnetic resonance imaging of language cortex , 1995, Int. J. Imaging Syst. Technol..

[42]  J A Fiez,et al.  Cerebellar Contributions to Cognition , 1996, Neuron.

[43]  S. Petersen,et al.  PET activation of posterior temporal regions during auditory word presentation and verb generation. , 1996, Cerebral cortex.

[44]  J E Desmond,et al.  On‐ and offline Talairach registration for structural and functional MRI studies , 1997, Human brain mapping.

[45]  Dani Byrd,et al.  Auditory Selective Attention: An fMRI Investigation , 1996, NeuroImage.

[46]  D. Lim,et al.  Effects of the acoustic noise of the gradient systems on fMRI: A study on auditory, motor, and visual cortices , 1998, Magnetic resonance in medicine.

[47]  J. Rauschecker Processing of complex sounds in the auditory cortex of cat, monkey, and man. , 1997, Acta oto-laryngologica. Supplementum.

[48]  R. Hari,et al.  Seeing speech: visual information from lip movements modifies activity in the human auditory cortex , 1991, Neuroscience Letters.

[49]  S. Dehaene,et al.  Anatomical variability in the cortical representation of first and second language , 1997, Neuroreport.

[50]  Hermann Ackermann,et al.  Cerebellar contributions to cognition , 1995, Behavioural Brain Research.

[51]  Richard S. J. Frackowiak,et al.  Functional anatomy of a common semantic system for words and pictures , 1996, Nature.

[52]  L. Katz,et al.  Cerebral organization of component processes in reading. , 1996, Brain : a journal of neurology.

[53]  M. Fahle Psychophysics as a tool to investigate the visual system , 1998 .

[54]  G. McCarthy,et al.  Human Brain Mapping 6:1–13(1998) � Functional MRI Studies of Auditory Comprehension , 2022 .

[55]  M E Raichle,et al.  What words are telling us about the brain. , 1996, Cold Spring Harbor symposia on quantitative biology.

[56]  R. J. Zatorre,et al.  PET Studies of Phonological Processing: A Critical Reply to Poeppel , 1996, Brain and Language.

[57]  E. Phelps,et al.  FMRI of the prefrontal cortex during overt verbal fluency , 1997, Neuroreport.

[58]  W. Grodd,et al.  Does the cerebellum contribute to cognitive aspects of speech production? A functional magnetic resonance imaging (fMRI) study in humans , 1998, Neuroscience Letters.

[59]  Douglas M. Bowden,et al.  NeuroNames Brain Hierarchy , 1995, NeuroImage.

[60]  J. Binder,et al.  Functional Magnetic Resonance Imaging , 1997 .

[61]  A. Schleicher,et al.  Cytoarchitectural maps of the human brain in standard anatomical space , 1997, Human brain mapping.

[62]  D C Noll,et al.  Estimating test‐retest reliability in functional MR imaging II: Application to motor and cognitive activation studies , 1997, Magnetic resonance in medicine.

[63]  K J Worsley,et al.  An overview and some new developments in the statistical analysis of PET and fMRI data , 1997, Human brain mapping.

[64]  R W Cox,et al.  Magnetic field changes in the human brain due to swallowing or speaking , 1998, Magnetic resonance in medicine.

[65]  Karl J. Friston,et al.  Event‐related f MRI , 1997, Human brain mapping.

[66]  J. Desmond,et al.  Dissociation of Frontal and Cerebellar Activity in a Cognitive Task: Evidence for a Distinction between Selection and Search , 1998, NeuroImage.