Non-Markovian Quantum Feedback Networks II: Controlled Flows
暂无分享,去创建一个
[1] M.R. James,et al. $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.
[2] Hideo Mabuchi,et al. Coherent-feedback quantum control with a dynamic compensator , 2008, 0803.2007.
[3] Viacheslav P. Belavkin,et al. Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes , 1989 .
[4] Hideo Mabuchi,et al. Squeezed light in an optical parametric oscillator network with coherent feedback quantum control. , 2013, Optics express.
[5] M. Yanagisawa,et al. Linear quantum feedback networks , 2008 .
[6] Hidenori Kimura,et al. Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..
[7] Dmitri S. Pavlichin,et al. Specification of photonic circuits using quantum hardware description language , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[8] M. R. James,et al. Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.
[9] Dmitri S. Pavlichin,et al. Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. , 2009, Physical review letters.
[10] Matthew R. James,et al. The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.
[11] Hideo Mabuchi,et al. Coherent-feedback control strategy to suppress spontaneous switching in ultralow power optical bistability , 2011, 1101.3461.
[12] P. Kuchment,et al. Introduction to Quantum Graphs , 2012 .
[13] Joseph Kerckhoff,et al. Superconducting microwave multivibrator produced by coherent feedback. , 2012, Physical review letters.
[14] Naoki Yamamoto,et al. Coherent versus measurement feedback: Linear systems theory for quantum information , 2014, 1406.6466.
[15] K. Parthasarathy. An Introduction to Quantum Stochastic Calculus , 1992 .
[16] O. González-Gaxiola,et al. On the Hamiltonian of a class of quantum stochastic processes , 2007 .
[17] H. Mabuchi,et al. Quantum trajectories for realistic detection , 2002 .
[18] Naoki Yamamoto,et al. Decoherence-Free Linear Quantum Subsystems , 2012, IEEE Transactions on Automatic Control.
[19] Wiseman,et al. Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[20] V. P. Belavkin,et al. A new wave equation for a continuous nondemolition measurement , 1989 .
[21] Joseph Kerckhoff,et al. The SLH framework for modeling quantum input-output networks , 2016, 1611.00375.
[22] Ramon van Handel,et al. On the separation principle of quantum control , 2005 .
[23] G. Milburn,et al. Quantum Measurement and Control , 2009 .
[24] M. Gregoratti. The Hamiltonian Operator Associated with Some Quantum Stochastic Evolutions , 2001 .
[25] Alexander M. Chebotarev. The Quantum Stochastic Differential Equation Is Unitarily Equivalent to a Symmetric Boundary Value Problem for the Schr , 1997 .
[26] Ryan Hamerly,et al. Advantages of coherent feedback for cooling quantum oscillators. , 2012, Physical review letters.
[27] J. E. Gough,et al. Enhancement of field squeezing using coherent feedback , 2009, 0906.1933.
[28] Ramon van Handel,et al. Quantum filtering: a reference probability approach , 2005 .
[29] Ian R. Petersen,et al. Control of Linear Quantum Stochastic Systems , 2007 .
[30] John Gough,et al. Non-Markovian quantum feedback networks I: Quantum transmission lines, lossless bounded real property and limit Markovian channels , 2016, 1604.02279.
[31] Robin L. Hudson,et al. Quantum Ito's formula and stochastic evolutions , 1984 .
[32] Matthew R. James,et al. An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.
[33] Alexander Mikhailovich Chebotarev. The quantum stochastic equation is unitarily equivalent to a symmetric boundary value problem for the Schrödinger equation , 1997 .