Non-Markovian Quantum Feedback Networks II: Controlled Flows

The concept of a controlled flow of a dynamical system, especially when the controlling process feeds information back about the system, is of central importance in control engineering. In this paper, we build on the ideas presented by Bouten and van Handel [Quantum Stochastics and Information: Statistics, Filtering and Control (World Scientific, 2008)] and develop a general theory of quantum feedback. We elucidate the relationship between the controlling processes, Z, and the measured processes, Y, and to this end we make a distinction between what we call the input picture and the output picture. We should note that the input-output relations for the noise fields have additional terms not present in the standard theory but that the relationship between the control processes and measured processes themselves is internally consistent—we do this for the two main cases of quadrature measurement and photon-counting measurement. The theory is general enough to include a modulating filter which post-processes ...

[1]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[2]  Hideo Mabuchi,et al.  Coherent-feedback quantum control with a dynamic compensator , 2008, 0803.2007.

[3]  Viacheslav P. Belavkin,et al.  Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes , 1989 .

[4]  Hideo Mabuchi,et al.  Squeezed light in an optical parametric oscillator network with coherent feedback quantum control. , 2013, Optics express.

[5]  M. Yanagisawa,et al.  Linear quantum feedback networks , 2008 .

[6]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[7]  Dmitri S. Pavlichin,et al.  Specification of photonic circuits using quantum hardware description language , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[9]  Dmitri S. Pavlichin,et al.  Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. , 2009, Physical review letters.

[10]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[11]  Hideo Mabuchi,et al.  Coherent-feedback control strategy to suppress spontaneous switching in ultralow power optical bistability , 2011, 1101.3461.

[12]  P. Kuchment,et al.  Introduction to Quantum Graphs , 2012 .

[13]  Joseph Kerckhoff,et al.  Superconducting microwave multivibrator produced by coherent feedback. , 2012, Physical review letters.

[14]  Naoki Yamamoto,et al.  Coherent versus measurement feedback: Linear systems theory for quantum information , 2014, 1406.6466.

[15]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[16]  O. González-Gaxiola,et al.  On the Hamiltonian of a class of quantum stochastic processes , 2007 .

[17]  H. Mabuchi,et al.  Quantum trajectories for realistic detection , 2002 .

[18]  Naoki Yamamoto,et al.  Decoherence-Free Linear Quantum Subsystems , 2012, IEEE Transactions on Automatic Control.

[19]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[20]  V. P. Belavkin,et al.  A new wave equation for a continuous nondemolition measurement , 1989 .

[21]  Joseph Kerckhoff,et al.  The SLH framework for modeling quantum input-output networks , 2016, 1611.00375.

[22]  Ramon van Handel,et al.  On the separation principle of quantum control , 2005 .

[23]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[24]  M. Gregoratti The Hamiltonian Operator Associated with Some Quantum Stochastic Evolutions , 2001 .

[25]  Alexander M. Chebotarev The Quantum Stochastic Differential Equation Is Unitarily Equivalent to a Symmetric Boundary Value Problem for the Schr , 1997 .

[26]  Ryan Hamerly,et al.  Advantages of coherent feedback for cooling quantum oscillators. , 2012, Physical review letters.

[27]  J. E. Gough,et al.  Enhancement of field squeezing using coherent feedback , 2009, 0906.1933.

[28]  Ramon van Handel,et al.  Quantum filtering: a reference probability approach , 2005 .

[29]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[30]  John Gough,et al.  Non-Markovian quantum feedback networks I: Quantum transmission lines, lossless bounded real property and limit Markovian channels , 2016, 1604.02279.

[31]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[32]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[33]  Alexander Mikhailovich Chebotarev The quantum stochastic equation is unitarily equivalent to a symmetric boundary value problem for the Schrödinger equation , 1997 .