Loadingin MHC Class I Peptide Distinct Functions of Tapasin Revealed by

and James McCluskeyChen Au Peh, Nihay Laham, Scott R. Burrows, Yong Zhuhttp://www.jimmunol.org/content/164/1/292J Immunol€2000; 164:292-299; ;Referenceshttp://www.jimmunol.org/content/164/1/292.full#ref-list-1This article cites 42 articles, 20 of which you can access for free at: Subscriptionshttp://jimmunol.org/subscriptionsInformation about subscribing to The Journal of Immunology is online at: Permissionshttp://www.aai.org/ji/copyright.htmlSubmit copyright permission requests at: Email Alertshttp://jimmunol.org/cgi/alerts/etocReceive free email-alerts when new articles cite this article. Sign up at:

[1]  P. Cresswell,et al.  Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. , 1996, Immunity.

[2]  E. Degen,et al.  Efficient dissociation of the p88 chaperone from major histocompatibility complex class I molecules requires both beta 2- microglobulin and peptide , 1992, The Journal of experimental medicine.

[3]  P. Cresswell,et al.  The N‐terminal region of tapasin is required to stabilize the MHC class I loading complex , 1999, European journal of immunology.

[4]  A. Beaulieu,et al.  Granulocyte‐macrophage colony‐stimulating factor modulates tapasin expression in human neutrophils , 1999, Journal of leukocyte biology.

[5]  M. Mann,et al.  ER‐60, a chaperone with thiol‐dependent reductase activity involved in MHC class I assembly , 1998, The EMBO journal.

[6]  A. McMichael,et al.  Differential processing of influenza nucleoprotein in human and mouse cells , 1998, European journal of immunology.

[7]  T. Elliott,et al.  Genes encoded in the major histocompatibility complex affecting the generation of peptides for TAP transport , 1995, European journal of immunology.

[8]  P. Cresswell,et al.  Assembly, peptide loading, and transport of MHC class I molecules in a calnexin-negative cell line. , 1995, Cold Spring Harbor symposia on quantitative biology.

[9]  C. Barnstable,et al.  Use of a monoclonal antibody (W6/32) in structural studies of HLA-A,B,C, antigens. , 1979, Journal of immunology.

[10]  R. Valerio,et al.  Synthesis of peptide analogues using the multipin peptide synthesis method. , 1991, Analytical biochemistry.

[11]  J. Solheim,et al.  Prominence of beta 2-microglobulin, class I heavy chain conformation, and tapasin in the interactions of class I heavy chain with calreticulin and the transporter associated with antigen processing. , 1997, Journal of immunology.

[12]  A. Sewell,et al.  HLA‐A*0201 presents TAP‐dependent peptide epitopes to cytotoxic T lymphocytes in the absence of tapasin , 1998, European journal of immunology.

[13]  P. Cresswell,et al.  Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line .220. , 1998, Immunity.

[14]  P. Cresswell,et al.  HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. , 1998, Immunity.

[15]  N. Morrice,et al.  A role for the thiol-dependent reductase ERp57 in the assembly of MHC class I molecules , 1998, Current Biology.

[16]  P. Cresswell,et al.  Negative regulation by HLA-DO of MHC class II-restricted antigen processing. , 1997, Science.

[17]  J. Yewdell,et al.  Calnexin expression does not enhance the generation of MHC class I‐peptide complexes , 1998, European journal of immunology.

[18]  P. A. Peterson,et al.  Retention of empty MHC class I molecules by tapasin is essential to reconstitute antigen presentation in invertebrate cells , 1999, The EMBO journal.

[19]  T. Elliott,et al.  Evidence for successive peptide binding and quality control stages during MHC class I assembly , 1998, Current Biology.

[20]  R. Tampé,et al.  Functional expression and purification of the ABC transporter complex associated with antigen processing (TAP) in insect cells , 1994, FEBS letters.

[21]  J. Yewdell,et al.  Assembly of MHC class I molecules with biosynthesized endoplasmic reticulum-targeted peptides is inefficient in insect cells and can be enhanced by protease inhibitors. , 1998, Journal of immunology.

[22]  P. A. Peterson,et al.  Alternative exon usage and processing of the major histocompatibility complex-encoded proteasome subunits. , 1992, The Journal of biological chemistry.

[23]  C. Théry,et al.  A role for HLA‐DO as a co‐chaperone of HLA‐DM in peptide loading of MHC class II molecules , 1998, The EMBO journal.

[24]  J. Monaco,et al.  Physical and Functional Association of the Major Histocompatibility Complex Class I Heavy Chain α3 Domain with the Transporter Associated with Antigen Processing , 1998, The Journal of experimental medicine.

[25]  P. Cresswell,et al.  The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex , 1998, Current Biology.

[26]  A. Vitiello,et al.  Analysis of the HLA-restricted influenza-specific cytotoxic T lymphocyte response in transgenic mice carrying a chimeric human-mouse class I major histocompatibility complex , 1991, The Journal of experimental medicine.

[27]  J. Yewdell,et al.  Cutting edge: adenovirus E19 has two mechanisms for affecting class I MHC expression. , 1999, Journal of immunology.

[28]  R. Tampé,et al.  A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. , 1997, Science.

[29]  J. Scott,et al.  MHC class I expression and transport in a calnexin-deficient cell line. , 1995, Journal of immunology.

[30]  P. Parham,et al.  Peptide binding to empty HLA-B27 molecules of viable human cells , 1991, Nature.

[31]  J. Berzofsky,et al.  Interaction of murine MHC class I molecules with tapasin and TAP enhances peptide loading and involves the heavy chain alpha3 domain. , 1999, Journal of immunology.

[32]  H. Sjögren,et al.  Peptide-bound Major Histocompatibility Complex Class I Molecules Associate with Tapasin before Dissociation from Transporter Associated with Antigen Processing* , 1999, The Journal of Biological Chemistry.

[33]  J. C. Cross,et al.  Elucidation of the genetic basis of the antigen presentation defects in the mutant cell line .220 reveals polymorphism and alternative splicing of the tapasin gene , 1998, European journal of immunology.

[34]  H. Ploegh,et al.  Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. , 1986, Journal of immunology.

[35]  R. Inman,et al.  HLA-B27 expression modulates gram-negative bacterial invasion into transfected L cells. , 1992, Journal of immunology.

[36]  J. Seidman,et al.  Exon shuffling: mapping polymorphic determinants on hybrid mouse transplantation antigens , 1982, Nature.

[37]  R. Demars,et al.  Novel allele-specific, post-translational reduction in HLA class I surface expression in a mutant human B cell line. , 1994, Journal of immunology.

[38]  S. L. Silins,et al.  T cell receptor repertoire for a viral epitope in humans is diversified by tolerance to a background major histocompatibility complex antigen , 1995, The Journal of experimental medicine.

[39]  M. Knittler,et al.  MHC class I molecules compete in the endoplasmic reticulum for access to transporter associated with antigen processing. , 1998, Journal of immunology.

[40]  L. Borysiewicz,et al.  The use of human leucocyte antigen class I transgenic mice to investigate human immune function. , 1998, Journal of immunological methods.

[41]  G. Riethmüller,et al.  Organization, sequence and expression of the HLA-B27 gene: a molecular approach to analyze HLA and disease associations , 1985 .

[42]  K. Früh,et al.  Sequence, linkage to H2-K, and function of mouse tapasin in MHC class I assembly , 1998, Immunogenetics.