Chaotic behavior in differential equations driven by a Brownian motion

Abstract In this paper, we investigate the chaotic behavior of ordinary differential equations with a homoclinic orbit to a saddle fixed point under an unbounded random forcing driven by a Brownian motion. We prove that, for almost all sample paths of the Brownian motion in the classical Wiener space, the forced equation admits a topological horseshoe of infinitely many branches. This result is then applied to the randomly forced Duffing equation and the pendulum equation.

[1]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[2]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[3]  Shui-Nee Chow,et al.  An example of bifurcation to homoclinic orbits , 1980 .

[4]  Qiudong Wang,et al.  Dissipative homoclinic loops and rank one chaos , 2008, 0802.4283.

[5]  J. Moser Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics. , 1973 .

[6]  D. Stoffer,et al.  Chaos in almost periodic systems , 1989 .

[7]  S. S. Cairns,et al.  Differential and combinatorial topology : a symposium in honor of Marston Morse , 1965 .

[8]  M. Levi Qualitative Analysis of the Periodically Forced Relaxation Oscillations , 1981 .

[9]  Konstantin Mischaikow,et al.  Horseshoes and the conley index spectrum-II: the theorem is sharp , 1999 .

[10]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[11]  A. Oksasoglu,et al.  On the dynamics of certain homoclinic tangles , 2008, 0802.4272.

[12]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[13]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[14]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[15]  J. Scheurle Chaotic solutions of systems with almost periodic forcing , 1986 .

[16]  G. Duffing,et al.  Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung , 1918 .

[17]  Kenneth J. Palmer,et al.  Exponential dichotomies and transversal homoclinic points , 1984 .

[18]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[19]  L. P. Šil'nikov ON A POINCARÉ-BIRKHOFF PROBLEM , 1967 .

[20]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[21]  V. Alekseev,et al.  QUASIRANDOM DYNAMICAL SYSTEMS. III QUASIRANDOM OSCILLATIONS OF ONE-DIMENSIONAL OSCILLATORS , 1969 .

[22]  Weigu Li,et al.  Sternberg theorems for random dynamical systems , 2005 .

[23]  N. Levinson,et al.  A Second Order Differential Equation with Singular Solutions , 1949 .

[24]  A. Oksasoglu,et al.  Dynamics of homoclinic tangles in periodically perturbed second-order equations , 2011 .

[25]  M. C. Carbinatto Horseshoes and the Conley index spectrum , 2000, Ergodic Theory and Dynamical Systems.

[26]  K. Meyer,et al.  MELNIKOV TRANSFORMS, BERNOULLI BUNDLES, AND ALMOST PERIODIC PERTURBATIONS , 1989 .

[27]  A. Szymczak The Conley index and symbolic dynamics , 1996 .

[28]  Kenneth J. Palmer,et al.  Exponential Dichotomies, the Shadowing Lemma and Transversal Homoclinic Points , 1988 .

[29]  L. Arnold Random Dynamical Systems , 2003 .

[30]  Kenneth J. Palmer,et al.  Chaos in the Duffing Equation , 1993 .

[31]  K. Lu,et al.  Chaos in differential equations driven by a nonautonomous force , 2010 .

[32]  Jerrold E. Marsden,et al.  Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom , 1982 .

[33]  K. Yagasaki Chaotic motions near homoclinic manifolds and resonant tori in quasiperiodic perturbations of planar Hamiltonian systems , 1993 .

[34]  V. Afraimovich,et al.  The ring principle in problems of interaction between two self-oscillating systems: PMM vol. 41, n≗4, 1977, pp. 618–627 , 1977 .

[35]  V. Alekseev QUASIRANDOM DYNAMICAL SYSTEMS. I. QUASIRANDOM DIFFEOMORPHISMS , 1968 .

[36]  Exponential dichotomies for almost periodic equations , 1987 .

[37]  Konstantin Mischaikow,et al.  Isolating neighborhoods and chaos , 1995 .

[38]  H. Weiss,et al.  A geometric criterion for positive topological entropy , 1995 .

[39]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[40]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .