Modeling Usual and Unusual Anisotropic Spheres

In this paper, we study anisotropic spheres built from known static spherical solutions. In particular, we are interested in the physical consequences of a "small" departure from a physically sensible configuration. The obtained solutions smoothly depend on free parameters. By setting these parameters to zero, the starting seed solution is regained. We apply our procedure in detail by taking as seed solutions the Florides metrics, and the Tolman IV solution. We show that the chosen Tolman IV solution, and also the Heint IIa and Durg IV,V perfect fluid solutions, can be used to generate a class of parametric solutions where the anisotropic factor has features recalling boson stars. This is an indication that boson stars could emerge by "perturbing" appropriately a perfect fluid solution (at least for the seed metrics considered). Finally, starting with the Tolman IV, Heint IIa and Durg IV,V solutions, we build anisotropic gravastar-like sources with the appropriate boundary conditions.

[1]  L. Herrera,et al.  All static spherically symmetric anisotropic solutions of Einstein's equations , 2007, 0712.0713.

[2]  F. Lobo Stable dark energy stars , 2005, gr-qc/0508115.

[3]  M. Visser,et al.  Gravastars must have anisotropic pressures , 2005, gr-qc/0505137.

[4]  S. Maharaj,et al.  Compact anisotropic spheres with prescribed energy density , 2005, gr-qc/0504098.

[5]  M. Gleiser,et al.  Anisotropic Stars II: Stability , 2003, gr-qc/0303077.

[6]  T. Harko,et al.  An Exact Anisotropic Quark Star Model , 2002 .

[7]  M. Gleiser,et al.  Anisotropic Stars: Exact Solutions , 2000, astro-ph/0012265.

[8]  T. Harko,et al.  Anisotropic charged fluid spheres in D space–time dimensions , 2000 .

[9]  K. Lake,et al.  Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein's equations , 1998, gr-qc/9809013.

[10]  A. Liddle,et al.  The Gravitational redshift of boson stars , 1997, gr-qc/9704029.

[11]  A. Liddle,et al.  The Structure and Formation of Boson Stars , 1992 .

[12]  Grasso Boson-star formation by classical instability. , 1990, Physical review. D, Particles and fields.

[13]  M. Bianchi,et al.  Jeans mass of a cosmological coherent scalar field , 1990 .

[14]  A. B. Henriques,et al.  Combined boson-fermion stars , 1989 .

[15]  R. Maartens,et al.  Anisotropic spheres with uniform energy density in general relativity , 1989 .

[16]  B. Stewart Conformally flat, anisotropic spheres in general relativity , 1982 .

[17]  L. Witten,et al.  Some models of anisotropic spheres in general relativity , 1981 .

[18]  G. Ruggeri,et al.  Adiabatic contraction of anisotropic spheres in general relativity , 1979 .

[19]  P. Florides A new interior Schwarzschild solution , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  E. Liang,et al.  Anisotropic spheres in general relativity , 1974 .

[21]  D. Kaup The klein-gordon geon , 1968 .

[22]  R. Tolman Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .

[23]  R. Tolman On the Use of the Energy-Momentum Principle in General Relativity , 1930 .