Local but not long-range microstructural differences of the ventral temporal cortex in developmental prosopagnosia

Individuals with developmental prosopagnosia (DP) experience face recognition impairments despite normal intellect and low-level vision and no history of brain damage. Prior studies using diffusion tensor imaging in small samples of subjects with DP (n=6 or n=8) offer conflicting views on the neurobiological bases for DP, with one suggesting white matter differences in two major long-range tracts running through the temporal cortex, and another suggesting white matter differences confined to fibers local to ventral temporal face-specific functional regions of interest (fROIs) in the fusiform gyrus. Here, we address these inconsistent findings using a comprehensive set of analyzes in a sample of DP subjects larger than both prior studies combined (n=16). While we found no microstructural differences in long-range tracts between DP and age-matched control participants, we found differences local to face-specific fROIs, and relationships between these microstructural measures with face recognition ability. We conclude that subtle differences in local rather than long-range tracts in the ventral temporal lobe are more likely associated with developmental prosopagnosia.

[1]  M. Catani,et al.  A diffusion tensor imaging tractography atlas for virtual in vivo dissections , 2008, Cortex.

[2]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[3]  K. Nakayama,et al.  Holistic processing of the mouth but not the eyes in developmental prosopagnosia , 2012, Cognitive neuropsychology.

[4]  Timothy Edward John Behrens,et al.  Addressing a systematic vibration artifact in diffusion‐weighted MRI , 2009, Human brain mapping.

[5]  Derek K. Jones,et al.  Interindividual Variation in Fornix Microstructure and Macrostructure Is Related to Visual Discrimination Accuracy for Scenes But Not Faces , 2014, The Journal of Neuroscience.

[6]  Nikolaus Weiskopf,et al.  Voxel-based morphometry reveals reduced grey matter volume in the temporal cortex of developmental prosopagnosics , 2009, Brain : a journal of neurology.

[7]  L. Deouell,et al.  Cognitive Neuroscience: Selective visual streaming in face recognition: evidence from developmental prosopagnosia , 1999 .

[8]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[9]  Brad Duchaine,et al.  Dissociations of Face and Object Recognition in Developmental Prosopagnosia , 2005, Journal of Cognitive Neuroscience.

[10]  D. Leopold,et al.  Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited , 2014, Proceedings of the National Academy of Sciences.

[11]  Galia Avidan,et al.  Detailed Exploration of Face-related Processing in Congenital Prosopagnosia: 1. Behavioral Findings , 2005, Journal of Cognitive Neuroscience.

[12]  Rafael Malach,et al.  Face-selective Activation in a Congenital Prosopagnosic Subject , 2003, Journal of Cognitive Neuroscience.

[13]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[14]  Jim Lagopoulos,et al.  White matter tractography in early psychosis: clinical and neurocognitive associations. , 2014, Journal of psychiatry & neuroscience : JPN.

[15]  S. Kitamura,et al.  Longitudinal white matter changes in Alzheimer's disease: A tractography-based analysis study , 2013, Brain Research.

[16]  Nikolaus Weiskopf,et al.  A method for improving the performance of gradient systems for diffusion-weighted MRI , 2007, Magnetic resonance in medicine.

[17]  Martin Eimer,et al.  The face-sensitive N170 component in developmental prosopagnosia , 2012, Neuropsychologia.

[18]  Nikolaus Weiskopf,et al.  Hyperelastic Susceptibility Artifact Correction of DTI in SPM , 2013, Bildverarbeitung für die Medizin.

[19]  Heidi Johansen-Berg,et al.  Individual Differences in White-Matter Microstructure Reflect Variation in Functional Connectivity during Choice , 2007, Current Biology.

[20]  D. Feinberg,et al.  Tissue perfusion in humans studied by fourier velocity distribution, line scan, and echo‐planar imaging , 1990, Magnetic resonance in medicine.

[21]  Yu Xie,et al.  Population heterogeneity and causal inference , 2013, Proceedings of the National Academy of Sciences.

[22]  Sunbin Song,et al.  White matter microstructural correlates of superior long-term skill gained implicitly under randomized practice. , 2012, Cerebral cortex.

[23]  Stephen M. Smith,et al.  Crossing fibres in tract-based spatial statistics , 2010, NeuroImage.

[24]  L. Jeffery,et al.  Adaptive face space coding in congenital prosopagnosia: Typical figural aftereffects but abnormal identity aftereffects , 2011, Neuropsychologia.

[25]  G. Bartzokis,et al.  Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical “disconnection” in aging and Alzheimer’s disease , 2004, Neurobiology of Aging.

[26]  T P L Roberts,et al.  High Angular Resolution Diffusion Imaging Probabilistic Tractography of the Auditory Radiation , 2013, American Journal of Neuroradiology.

[27]  J. Modersitzki,et al.  Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images , 2012, Physics in medicine and biology.

[28]  K. Nakayama,et al.  Face detection in normal and prosopagnosic individuals. , 2008, Journal of neuropsychology.

[29]  Jennifer M. D. Yoon,et al.  Functionally Defined White Matter Reveals Segregated Pathways in Human Ventral Temporal Cortex Associated with Category-Specific Processing , 2015, Neuron.

[30]  David K. Yu,et al.  Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography , 2015, Proceedings of the National Academy of Sciences.

[31]  Derek K. Jones,et al.  Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .

[32]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[33]  B. Duchaine,et al.  Advances in developmental prosopagnosia research , 2013, Current Opinion in Neurobiology.

[34]  Leslie G. Ungerleider,et al.  The inferior longitudinal fasciculus: A reexamination in humans and monkeys , 1985, Annals of neurology.

[35]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[36]  Albert Yonas,et al.  "A room full of strangers every day": the psychosocial impact of developmental prosopagnosia on children and their families. , 2014, Journal of psychosomatic research.

[37]  Ken Nakayama,et al.  Psychosocial consequences of developmental prosopagnosia: a problem of recognition. , 2008, Journal of psychosomatic research.

[38]  Mary A. Peterson,et al.  Reduction in White Matter Connectivity, Revealed by Diffusion Tensor Imaging, May Account for Age-related Changes in Face Perception , 2008, Journal of Cognitive Neuroscience.

[39]  Ken Nakayama,et al.  No global processing deficit in the Navon task in 14 developmental prosopagnosics. , 2007, Social cognitive and affective neuroscience.

[40]  K. Verfaillie,et al.  Impaired holistic and analytic face processing in congenital prosopagnosia: Evidence from the eye-contingent mask/window paradigm , 2014 .

[41]  Galia Avidan,et al.  Impaired holistic processing in congenital prosopagnosia , 2011, Neuropsychologia.

[42]  Rafael Malach,et al.  Detailed Exploration of Face-related Processing in Congenital Prosopagnosia: 2. Functional Neuroimaging Findings , 2005, Journal of Cognitive Neuroscience.

[43]  Martin Eimer,et al.  Electrophysiological markers of covert face recognition in developmental prosopagnosia. , 2012, Brain : a journal of neurology.

[44]  V. Wedeen,et al.  Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo , 2003, Magnetic resonance in medicine.

[45]  Alexander Todorov,et al.  Reading trustworthiness in faces without recognizing faces , 2008, Cognitive neuropsychology.

[46]  Raymond J. Dolan,et al.  Fusiform Gyrus Face Selectivity Relates to Individual Differences in Facial Recognition Ability , 2011, Journal of Cognitive Neuroscience.

[47]  P. Bhattacharya Diffusion MRI: Theory, methods, and applications, Derek K. Jones (Ed.). Oxford University press (2011), $152.77 , 2012 .

[48]  Xun-ning Hong,et al.  Correlation between cognitive function and the association fibers in patients with Alzheimer’s disease using diffusion tensor imaging , 2012, Journal of Clinical Neuroscience.

[49]  Kalanit Grill-Spector,et al.  The improbable simplicity of the fusiform face area , 2012, Trends in Cognitive Sciences.

[50]  Leslie G. Ungerleider,et al.  Selective dissociation between core and extended regions of the face processing network in congenital prosopagnosia. , 2014, Cerebral cortex.

[51]  Galia Avidan,et al.  Functional MRI Reveals Compromised Neural Integrity of the Face Processing Network in Congenital Prosopagnosia , 2009, Current Biology.

[52]  Repeat after me: Replication in clinical neuroimaging is critical , 2013, NeuroImage: Clinical.

[53]  Katrin Amunts,et al.  The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex , 2014, NeuroImage.

[54]  M. Behrmann,et al.  Congenital prosopagnosia: face-blind from birth , 2005, Trends in Cognitive Sciences.

[55]  Mario Quarantelli,et al.  Structural connectivity in a single case of progressive prosopagnosia: The role of the right inferior longitudinal fasciculus , 2014, Cortex.

[56]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[57]  Galia Avidan,et al.  Structural imaging reveals anatomical alterations in inferotemporal cortex in congenital prosopagnosia. , 2007, Cerebral cortex.

[58]  K. Nakayama,et al.  The Cambridge Face Memory Test: Results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants , 2006, Neuropsychologia.

[59]  B. Miller,et al.  White matter damage in primary progressive aphasias: a diffusion tensor tractography study. , 2011, Brain : a journal of neurology.

[60]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[61]  Ingo Kennerknecht,et al.  Prevalence of hereditary prosopagnosia (HPA) in Hong Kong Chinese population , 2008, American journal of medical genetics. Part A.

[62]  Nikolaus Weiskopf,et al.  Correction of vibration artifacts in DTI using phase-encoding reversal (COVIPER) , 2012, Magnetic resonance in medicine.

[63]  Paul A. Taylor,et al.  FATCAT: (An Efficient) Functional And Tractographic Connectivity Analysis Toolbox , 2013, Brain Connect..

[64]  R Turner,et al.  Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T , 2004, NeuroImage.

[65]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[66]  Ingo Kennerknecht,et al.  First report of prevalence of non‐syndromic hereditary prosopagnosia (HPA) , 2006, American journal of medical genetics. Part A.

[67]  Daniel C. Alexander,et al.  Persistent Angular Structure: New Insights from Diffusion MRI Data. Dummy Version , 2003, IPMI.

[68]  Kirsten A. Dalrymple,et al.  Dissociation between face perception and face memory in adults, but not children, with developmental prosopagnosia , 2014, Developmental Cognitive Neuroscience.

[69]  Yaniv Assaf,et al.  Separate parts of occipito-temporal white matter fibers are associated with recognition of faces and places , 2014, NeuroImage.

[70]  Hervé Abdi,et al.  A comprehensive reliability assessment of quantitative diffusion tensor tractography , 2012, NeuroImage.

[71]  Galia Avidan,et al.  Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia , 2009, Nature Neuroscience.

[72]  Ken Nakayama,et al.  Normal and abnormal face selectivity of the M170 response in developmental prosopagnosics , 2005, Neuropsychologia.