Following a saddle-Node of Periodic orbits' bifurcation Curve in Chua's Circuit

Starting from previous analytical results assuring the existence of a saddle-node bifurcation curve of periodic orbits for continuous piecewise linear systems, numerical continuation is done to get some primary bifurcation curves for the piecewise linear Chua's oscillator in certain dimensionless parameter plane. The primary period doubling, homoclinic and saddle-node of periodic orbits' bifurcation curves are computed. A Belyakov point is detected in organizing the connection of these curves. In the parametric region between period-doubling, focus-center-limit cycle and homoclinic bifurcation curves, chaotic attractors coexist with stable nontrivial equilibria. The primary saddle-node bifurcation curve plays a leading role in this coexistence phenomenon.