Metamorphic GaInP-GaInAs Layers for Photovoltaic Applications

[1]  John F. Klem,et al.  Minority carrier diffusion and defects in InGaAsN grown by molecular beam epitaxy , 2002 .

[2]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 24) , 2004 .

[3]  G. Patriarche,et al.  Solid-solution strengthening in ordered In x Ga1 −  x P alloys , 2004 .

[4]  T. Figielski,et al.  Misfit strain anisotropy in partially relaxed lattice-mismatched InGaAs/GaAs heterostructures , 2004 .

[5]  D. Wallis,et al.  Dependence of the critical thickness on Si doping of InGaAs on GaAs , 2000 .

[6]  U. Schubert,et al.  MOVPE grown Ga1−xInxAs solar cells for GaInP/GaInAs tandem applications , 2000 .

[7]  F. Dimroth,et al.  25.5% efficient Ga/sub 0.35/In/sub 0.65/P/Ga/sub 0.83/In/sub 0.17/As tandem solar cells grown on GaAs substrates , 2000, IEEE Electron Device Letters.

[8]  D. González,et al.  CRITICAL THICKNESS FOR THE SATURATION STATE OF STRAIN RELAXATION IN THE INGAAS/GAAS SYSTEMS , 1998 .

[9]  D. González,et al.  Dislocation behavior in InGaAs step‐ and alternating step‐graded structures: Design rules for buffer fabrication , 1995 .

[10]  E. Fitzgerald,et al.  Relaxed InxGa1−xAs graded buffers grown with organometallic vapor phase epitaxy on GaAs , 1998 .

[11]  J. Gordon,et al.  Toward ultrahigh-flux photovoltaic concentration , 2004 .

[12]  S. Sinharoy,et al.  Progress in the development of metamorphic multi‐junction III–V space solar cells , 2002 .

[13]  F. Romanato,et al.  Strain relaxation in graded composition InxGa1−xAs/GaAs buffer layers , 1999 .