Chemically active plasmas for deterministic assembly of nanocrystalline SiC film

Silicon carbide thin films are self-assembled onto crystalline silicon substrate from a sintered SiC target at low substrate temperature of 400 °C in Ar + H2 discharge using inductively coupled plasma (ICP) assisted RF magnetron sputtering system. Surface morphology and structural properties of SiC films are investigated by SEM, XRD, FTIR and EDX. SEM, XRD and FTIR results show that the SiC film deposited at an ICP power of 800 W is 3C-SiC nanocrystalline film while the film deposited without ICP power exhibits an amorphous structure. At ICP power of 800 W, there exists a large amount of dissociated H in the plasma, leading to the structural relaxation of the amorphous network towards the crystalline state. The EDX result shows that elemental compositions of Si and C atoms in both the films are almost stoichiometric.

[1]  Li Han,et al.  Structural and optical properties of hydrogenated amorphous silicon carbide films by helicon wave plasma-enhanced chemical vapour deposition , 2004 .

[2]  Shuyan Xu,et al.  Self-assembly of uniform carbon nanotip structures in chemically active inductively coupled plasmas , 2004 .

[3]  H. Ohno,et al.  Electrical magnetization reversal in ferromagnetic III–V semiconductors , 2006 .

[4]  Q. Wahab,et al.  Growth of epitaxial 3C‐SiC films on (111) silicon substrates at 850 °C by reactive magnetron sputtering , 1993 .

[5]  I. R. Jones,et al.  Low-frequency, high-density, inductively coupled plasma sources: Operation and applications , 2001 .

[6]  Fabrice Gourbilleau,et al.  Low temperature deposition of nanocrystalline silicon carbide thin films , 2000 .

[7]  J. Keinonen,et al.  Optical properties of ion irradiated and annealed InGaAs/GaAs quantum wells and semiconductor saturable absorber mirrors , 2005 .

[8]  Rusli,et al.  Deposition of nanocrystalline cubic silicon carbide films using the hot-filament chemical-vapor-deposition method , 2000 .

[9]  G. Barucca,et al.  Microstructure analysis on polycrystalline 3C–SiC thin films , 2005 .

[10]  Michael Keidar,et al.  Deterministic nanoassembly: Neutral or plasma route? , 2006 .

[11]  N. Ledentsov,et al.  Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers , 1996 .

[12]  S. Xu,et al.  Power transfer and mode transitions in low-frequency inductively coupled plasmas , 2000 .

[13]  R. Rizk,et al.  Influence of substrate temperature on growth of nanocrystalline silicon carbide by reactive magnetron sputtering , 2005 .

[14]  F. C. Loh,et al.  Infrared and x-ray photoelectron spectroscopy studies of as-prepared and furnace-annealed radio-frequency sputtered amorphous silicon carbide films , 1998 .

[15]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[16]  Kostya Ostrikov,et al.  Colloquium: Reactive plasmas as a versatile nanofabrication tool , 2005 .