Complexity of the Szeged index, edge orbits, and some nanotubical fullerenes

Let $I$ be a summation-type topological index. The $I$-complexity $C_I(G)$ of a graph $G$ is the number of different contributions to $I(G)$ in its summation formula. In this paper the complexity $C_{Sz}(G)$ is investigated, where Sz is the well-studied Szeged index. Let $O_e(G)$ (resp. $O_v(G)$) be the number of edge (resp. vertex) orbits of $G$. While $C_{Sz}(G) \leq O_e(G)$ holds for any graph $G$, it is shown that for any $m\geq 1$ there exists a vertex-transitive graph $G_m$ with $C_{Sz}(G_m) = O_e(G_m) = m$. Also, for any $1\leq k\leq m+1$ there exists a graph $G_{m,k}$ with $C_{Sz}(G_{m,k}) = O_e(G_{m,k}) = m$ and $C_{W}(G_{m,k}) = O_v(G_{m,k}) = k$. The Sz-complexity is determined for a family of (5,0)-nanotubical fullerenes and the Szeged index is compared with the total eccentricity.

[1]  Shuchao Li,et al.  On the further relation between the (revised) Szeged index and the Wiener index of graphs , 2016, Discret. Appl. Math..

[2]  István Lukovits,et al.  Szeged Index - Applications for Drug Modeling&# , 2005 .

[3]  Aida Abiad,et al.  On the Wiener index, distance cospectrality and transmission-regular graphs , 2017, Discret. Appl. Math..

[4]  Sandi Klavžar,et al.  The Szeged and the Wiener Index of Graphs , 1996 .

[5]  Yaser Alizadeh,et al.  Wiener Dimension: Fundamental Properties and (5,0)-Nanotubical Fullerenes , 2013 .

[6]  Riste Škrekovski,et al.  On the diameter and some related invariants of fullerene graphs , 2012 .

[7]  Ali Reza Ashrafi,et al.  Graphs whose Szeged and Wiener numbers differ by 4 and 5 , 2012, Math. Comput. Model..

[8]  Yaser Alizadeh,et al.  Complexity of Topological Indices: The Case of Connective Eccentric Index , 2016 .

[9]  M. Arockiaraj,et al.  Variants of the Szeged index in certain chemical nanosheets , 2016 .

[10]  Ali Reza Ashrafi,et al.  On the differences between Szeged and Wiener indices of graphs , 2011, Discret. Math..

[11]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[12]  Indra Rajasingh,et al.  General Transmission Lemma and Wiener complexity of triangular grids , 2018, Appl. Math. Comput..

[13]  Kexiang Xu,et al.  Some extremal results on the connective eccentricity index of graphs , 2016 .

[14]  Yaser Alizadeh,et al.  On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs , 2018, Appl. Math. Comput..

[15]  Kexiang Xu,et al.  A congruence relation for Wiener and Szeged indices , 2015 .

[16]  Shuchao Li,et al.  Proofs of three conjectures on the quotients of the (revised) Szeged index and the Wiener index and beyond , 2017, Discret. Math..

[17]  Roger C. Entringer,et al.  Distance in graphs , 1976 .

[18]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[19]  M. Goubko,et al.  Simple Alcohols with the Lowest Normal Boiling Point Using Topological Indices , 2015, 1502.01223.

[20]  A. Q. Baig,et al.  On molecular topological properties of hex‐derived networks , 2016 .

[21]  K. Balasubramanian,et al.  Analytical expressions for topological properties of polycyclic benzenoid networks , 2016 .

[22]  Hua Wang,et al.  Eccentricity sums in trees , 2016, Discret. Appl. Math..

[23]  Sandi Klavzar,et al.  Improved bounds on the difference between the Szeged index and the Wiener index of graphs , 2014, Eur. J. Comb..

[24]  F. Shafiei,et al.  QSPR study on benzene derivatives to some physico-chemical properties by using topological indices , 2016 .

[25]  Sandi Klavzar,et al.  Wiener index versus Szeged index in networks , 2013, Discret. Appl. Math..

[26]  A K Madan,et al.  Connective eccentricity index: a novel topological descriptor for predicting biological activity. , 2000, Journal of molecular graphics & modelling.

[27]  Dominique Buset Orbits on vertices and edges of finite graphs , 1985, Discret. Math..

[28]  Kinkar Chandra Das,et al.  Comparison between the Szeged index and the eccentric connectivity index , 2015, Discret. Appl. Math..

[29]  R Todeschini,et al.  Molecular Descriptors for Chemoinformatics. Vol. 1. Alphabetical Listing; Vol. 2. Appendices, References , 2009 .