A Study of the Traveling Salesman Problem Using Fuzzy Self Organizing Map

Kohonen self organizing map is an important artificial neural network technique that uses competitive, unsupervised learning to produce a low-dimensional discretized representation of the input space of the training samples which preserves the topological properties of the input space. The fuzzy set theory introduces the concept of membership function to the learning process of Self Organizing Map which helps to handle the inherent vagueness involved in most of the real life problems. In this paper, fuzzy self organizing map with one dimensional neighborhood is used to find an optimal solution for the symmetrical Traveling Salesperson Problem. The solution generated by the Fuzzy Self Organizing Map algorithm is improved by the 2opt algorithm. Finally, the Fuzzy Self Organizing Map algorithm is compared with Lin-Kerninghan Algorithm and Evolutionary Algorithm with Enhanced Edge Recombination operator and self-adapting mutation rate.

[1]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[2]  Zbigniew Michalewicz,et al.  Inver-over Operator for the TSP , 1998, PPSN.

[3]  Tao Shen Tao Shen,et al.  Application Of Fuzzy Neural Computing For Partitioning Circuits , 1992 .

[4]  Gilbert Laporte,et al.  A concise guide to the Traveling Salesman Problem , 2010, J. Oper. Res. Soc..

[5]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[6]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[7]  David Applegate,et al.  Finding Cuts in the TSP (A preliminary report) , 1995 .

[8]  Lotfi A. Zadeh,et al.  Fuzzy logic, neural networks, and soft computing , 1993, CACM.

[9]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[10]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[11]  Laura I. Burke,et al.  Neural methods for the traveling salesman problem: Insights from operations research , 1994, Neural Networks.

[12]  X. Xu,et al.  Effective neural algorithms for the traveling salesman problem , 1991, Neural Networks.

[13]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[14]  Teuvo Kohonen,et al.  Self-Organizing Maps, Third Edition , 2001, Springer Series in Information Sciences.

[15]  Vangelis Th. Paschos,et al.  Applications of combinatorial optimization , 2010 .

[16]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[17]  Albert D. Carlson,et al.  The Handbook of Brain Theory and Neural Networks.Second Edition. Edited byMichael A Arbib.A Bradford Book. Cambridge (Massachusetts): MIT Press. $165.00. xvii + 1290 p; ill.; index. ISBN: 0–262–01197–2. 2003. , 2003 .

[18]  Bernd Fritzke,et al.  Growing cell structures--A self-organizing network for unsupervised and supervised learning , 1994, Neural Networks.

[19]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[20]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[21]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[22]  R. Bixby,et al.  On the Solution of Traveling Salesman Problems , 1998 .

[23]  睦憲 柳浦,et al.  Combinatorial Optimization : Theory and Algorithms (3rd Edition), B. Korte and J. Vygen 著, 出版社 Springer, 発行 2006年, 全ページ 597頁, 価格 53.45ユーロ, ISBN 3-540-25684-9 , 2006 .

[24]  William M. Springer Review of the traveling salesman problem: a computational study by Applegate, Bixby, Chvátal, and Cook (Princeton University Press) , 2009, SIGA.

[25]  Rudy Setiono,et al.  Feedforward Neural Network Construction Using Cross Validation , 2001, Neural Computation.

[26]  Andreas Rauber,et al.  The growing hierarchical self-organizing map , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[27]  Michael Pilegaard Hansen Use of Substitute Scalarizing Functions to Guide a Local Search Based Heuristic: The Case of moTSP , 2000, J. Heuristics.

[28]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[29]  Lotfi A. Zadeh,et al.  Fuzzy Logic , 2009, Encyclopedia of Complexity and Systems Science.

[30]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[31]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[32]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[33]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[34]  Cad La APPLICATION OF FUZZY NEURAL COMPUTING IN CIRCUIT PARTITIONING , 1992 .

[35]  David S. Johnson,et al.  Asymptotic experimental analysis for the Held-Karp traveling salesman bound , 1996, SODA '96.

[36]  Chuen-Tsai Sun,et al.  Neuro-fuzzy And Soft Computing: A Computational Approach To Learning And Machine Intelligence [Books in Brief] , 1997, IEEE Transactions on Neural Networks.

[37]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[38]  L. Darrell Whitley,et al.  A Comparison of Genetic Sequencing Operators , 1991, ICGA.

[39]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[40]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[41]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[42]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.