Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces.

We demonstrate that polarization conversion in coupled dimer antennas, used in phase discontinuity metasurfaces, can be tuned by careful design. By controlling the gap width, a strong variation of the coupling strength and polarization conversion is found between capacitively and conductively coupled antennas. A theoretical two-oscillator model is proposed, which shows a universal scaling of the degree of polarization conversion with the energy splitting of the symmetric and antisymmetric modes supported by the antennas. Using single antenna spectroscopy, we find good agreement for the scaling of mode splitting and polarization conversion with gap width over the range from capacitive to conductive coupling. Next to linear polarization conversion, we demonstrate single-antenna linear to circular polarization conversion. Our results provide strategies for phase-discontinuity metasurfaces and ultracompact polarization optics.

[1]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[2]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[3]  Harald Giessen,et al.  Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model. , 2013, Nano letters.

[4]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[5]  F. Angelis,et al.  Design and top-down fabrication of metallic L-shape gap nanoantennas supporting plasmon-polariton modes , 2013 .

[6]  Javier Aizpurua,et al.  Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling. , 2013, Nano letters.

[7]  O. Martin,et al.  Coupling strength can control the polarization twist of a plasmonic antenna. , 2013, Nano letters.

[8]  Dries Vercruysse,et al.  Unidirectional side scattering of light by a single-element nanoantenna. , 2013, Nano letters.

[9]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[10]  Andrea Alù,et al.  Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. , 2013, Nano letters.

[11]  Ekmel Ozbay,et al.  Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission , 2013 .

[12]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[13]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[14]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[15]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[16]  E. Li,et al.  Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons. , 2012, ACS nano.

[17]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[18]  Eric C. Le Ru,et al.  Radiative correction in approximate treatments of electromagnetic scattering by point and body scatterers , 2012, 1210.0936.

[19]  R. Blanchard,et al.  Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy , 2012, Proceedings of the National Academy of Sciences.

[20]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[21]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[22]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[23]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[24]  Jianfang Wang,et al.  Universal scaling and Fano resonance in the plasmon coupling between gold nanorods. , 2011, ACS nano.

[25]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[26]  Jing Yang,et al.  Subwavelength Quarter-Waveplate Composed of L-Shaped Metal Nanoparticles , 2011 .

[27]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[28]  M. Kuittinen,et al.  Particle plasmon resonances in L-shaped gold nanoparticles. , 2010, Optics express.

[29]  Hai-Qing Lin,et al.  Angle- and energy-resolved plasmon coupling in gold nanorod dimers. , 2010, ACS nano.

[30]  Romain Quidant,et al.  Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. , 2009, ACS nano.

[31]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[32]  Otto L. Muskens,et al.  OPTICAL EXTINCTION SPECTRUM OF A SINGLE METAL NANOPARTICLE: QUANTITATIVE CHARACTERIZATION OF A PARTICLE AND OF ITS LOCAL ENVIRONMENT , 2008 .

[33]  Erik Dujardin,et al.  Shaping and manipulation of light fields with bottom-up plasmonic structures , 2008 .

[34]  T. Seideman,et al.  Nanoparticle Spectroscopy: Birefringence in Two-Dimensional Arrays of L-Shaped Silver Nanoparticles , 2008 .

[35]  T. Seideman,et al.  Optical properties of metal nanoparticles with no center of inversion symmetry : Observation of volume plasmons , 2007, 0710.1652.

[36]  J. Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics express.

[37]  M. Broyer,et al.  Direct measurement of the single-metal-cluster optical absorption. , 2004, Physical review letters.

[38]  张家森,et al.  Resonant Modes of L-Shaped Gold Nanoparticles , 2009 .