Dynamic Triboelectrification‐Induced Electroluminescence and its Use in Visualized Sensing

Triboelectrification-induced electroluminescence converts dynamic motion into light emission. Tribocharges resulting from the relative mechanical interactions between two dissimilar materials can abruptly and significantly alter the surrounding electric potential, exciting the electroluminescence of phosphor along the motion trajectory. The position, trajectory, and contour profile of a moving object can be visualized in high resolution, demonstrating applications in sensing.

[1]  Xiaogang Qu,et al.  Graphene quantum dots-band-aids used for wound disinfection. , 2014, ACS nano.

[2]  Kyung-Il Joo,et al.  Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer , 2014 .

[3]  J. Kwon,et al.  Investigation of radiation-induced free radicals and luminescence properties in fresh pomegranate fruits. , 2013, Journal of agricultural and food chemistry.

[4]  Tyler J. Wellman,et al.  Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function. , 2015, Nature materials.

[5]  B. Grzybowski,et al.  The Mosaic of Surface Charge in Contact Electrification , 2011, Science.

[6]  P. Schmidt,et al.  Inorganic Luminescent Materials: 100 Years of Research and Application , 2003 .

[7]  Andries Meijerink,et al.  Luminescence of nanocrystalline ZnS:Cu2+ , 2002 .

[8]  Dayalan Kasilingam,et al.  Textile‐Based Flexible Electroluminescent Devices , 2011 .

[9]  S. Chaudhuri,et al.  Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons. , 2005, The journal of physical chemistry. B.

[10]  Costantino Creton,et al.  Toughening Elastomers with Sacrificial Bonds and Watching Them Break , 2014, Science.

[11]  Elena Boldyreva,et al.  Mechanochemistry of inorganic and organic systems: what is similar, what is different? , 2013, Chemical Society reviews.

[12]  Mohini Sain,et al.  Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder , 2012 .

[13]  Zhong Lin Wang,et al.  Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process , 2015, Advanced materials.

[14]  Jung Ho Yu,et al.  High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. , 2013, Nature materials.

[15]  Koen Binnemans,et al.  Lanthanide-based luminescent hybrid materials. , 2009, Chemical reviews.

[16]  S. R. Vadera,et al.  Multicolor electroluminescent devices using doped ZnS nanocrystals , 2004 .

[17]  Pooi See Lee,et al.  Highly Stretchable and Self‐Deformable Alternating Current Electroluminescent Devices , 2015, Advanced materials.

[18]  C. Adachi,et al.  Highly efficient organic light-emitting diodes by delayed fluorescence , 2013 .

[19]  Zhong Lin Wang,et al.  Radial-arrayed rotary electrification for high performance triboelectric generator , 2014, Nature Communications.

[20]  V. Bulović,et al.  Electroluminescence from nanoscale materials via field-driven ionization. , 2011, Nano letters.

[21]  Yitai Qian,et al.  Tunable Synthesis of Various Wurtzite ZnS Architectural Structures and Their Photocatalytic Properties , 2007 .

[22]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[23]  B. P. Chandra,et al.  Microscopic theory of elastico-mechanoluminescent smart materials , 2014 .

[24]  George M. Whitesides,et al.  Electrostatic self-assembly of macroscopic crystals using contact electrification , 2003, Nature materials.

[25]  H. Möhwald,et al.  Nonvolatile liquid anthracenes for facile full-colour luminescence tuning at single blue-light excitation , 2013, Nature Communications.

[26]  Zhong Lin Wang,et al.  In situ quantitative study of nanoscale triboelectrification and patterning. , 2013, Nano letters.

[27]  张艺,et al.  Very bright mechanoluminescence and remarkable mechanochromism using a tetraphenylethene derivative with aggregation-induced emission , 2015 .

[28]  Guang Zhu,et al.  Surface-charge engineering for high-performance triboelectric nanogenerator based on identical electrification materials , 2014 .

[29]  M. Bredol,et al.  Materials for Powder-Based AC-Electroluminescence , 2010, Materials.

[30]  Chao-Nan Xu,et al.  Electro‐Mechano‐Optical Conversions in Pr3+‐Doped BaTiO3–CaTiO3 Ceramics , 2005 .

[31]  I. Moreels,et al.  Luminescence in Sulfides: A Rich History and a Bright Future , 2010, Materials.

[32]  V. Bulović,et al.  Alternating current driven electroluminescence from ZnSe/ZnS:Mn/ZnS nanocrystals. , 2009, Nano letters.

[33]  Na Ree Kim,et al.  Thermally Stable, Dye‐Bridged Nanohybrid‐Based White Light‐Emitting Diodes , 2011, Advanced materials.

[34]  L. McCarty,et al.  Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. , 2008, Angewandte Chemie.

[35]  Junjie Bai,et al.  A Self‐Powered Angle Measurement Sensor Based on Triboelectric Nanogenerator , 2015 .

[36]  Soon Moon Jeong,et al.  Color Manipulation of Mechanoluminescence from Stress‐Activated Composite Films , 2013, Advanced materials.

[37]  Yanrong Li,et al.  Flexible graphene-based electroluminescent devices. , 2011, ACS nano.

[38]  Soon Moon Jeong,et al.  Mechanically driven light-generator with high durability , 2013 .

[39]  Takeharu Nagai,et al.  Luminescent proteins for high-speed single-cell and whole-body imaging , 2012, Nature Communications.

[40]  Long Lin,et al.  Theory of Sliding‐Mode Triboelectric Nanogenerators , 2013, Advanced materials.

[41]  W. Peng,et al.  Synthesis and photoluminescence of ZnS:Cu nanoparticles , 2006 .

[42]  Wei Huang,et al.  Stabilizing triplet excited states for ultralong organic phosphorescence. , 2015, Nature materials.

[43]  Y. Bando,et al.  Recent Developments in One‐Dimensional Inorganic Nanostructures for Photodetectors , 2010 .

[44]  Juan V. Escobar,et al.  Correlation between nanosecond X-ray flashes and stick–slip friction in peeling tape , 2008, Nature.