Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems

In this paper we propose a solution to the problem of moment matching with preservation of the port Hamiltonian structure, in the framework of time-domain moment matching. We characterize several families of parameterized port Hamiltonian models that match the moments of a given port Hamiltonian system, at a set of finite interpolation points. We also discuss the problem of Markov parameters matching for linear systems as a moment matching problem for descriptor representations associated with the given system, at zero interpolation points. Solving this problem yields families of parameterized reduced order models that achieve Markov parameter matching. Finally, we apply these results to the port Hamiltonian case, resulting in families of parameterized reduced order port Hamiltonian approximations.

[1]  R. Ortega,et al.  On Transient Stabilization of Power Systems: A Power-Shaping Solution for Structure-Preserving Models , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[2]  Anders Lindquist,et al.  Important Moments in Systems and Control , 2008, SIAM J. Control. Optim..

[3]  J. Marsden,et al.  Structure-preserving Model Reduction of Mechanical Systems , 2000 .

[4]  P. Kundur,et al.  Power system stability and control , 1994 .

[5]  Carsten Hartmann,et al.  Balancing of dissipative Hamiltonian systems , 2009 .

[6]  Romeo Ortega,et al.  Interconnection and Damping Assignment Passivity-Based Control: A Survey , 2004, Eur. J. Control.

[7]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[8]  J. Willems,et al.  On the solution of the minimal rational interpolation problem , 1990 .

[9]  Paul Van Dooren,et al.  Model reduction and the solution of Sylvester equations , 2006 .

[10]  Thomas Wolf,et al.  Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces , 2010, Eur. J. Control.

[11]  Arjan van der Schaft,et al.  Moment matching for linear port-Hamiltonian systems , 2009, 2009 European Control Conference (ECC).

[12]  I. Jaimoukha,et al.  Implicitly Restarted Krylov Subspace Methods for Stable Partial Realizations , 1997, SIAM J. Matrix Anal. Appl..

[13]  W. Gibson Solution of Matrix Equations , 2014, The Method of Moments in Electromagnetics.

[14]  Jacquelien M. A. Scherpen,et al.  Singular Value Analysis Of Nonlinear Symmetric Systems , 2011, IEEE Transactions on Automatic Control.

[15]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[16]  Jacquelien M. A. Scherpen,et al.  Passivity preserving model order reduction for the SMIB , 2008, 2008 47th IEEE Conference on Decision and Control.

[17]  A. Antoulas,et al.  An H/sub 2/ error expression for the Lanczos procedure , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[18]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[19]  F. M. Hughes,et al.  Power System Control and Stability , 1977 .

[20]  Kyle A. Gallivan,et al.  Sylvester equations and projection-based model reduction , 2004 .

[21]  Serkan Gugercin,et al.  H2 Model Reduction for Large-Scale Linear Dynamical Systems , 2008, SIAM J. Matrix Anal. Appl..

[22]  T. Başar Absolute Stability of Nonlinear Systems of Automatic Control , 2001 .

[23]  Arjan van der Schaft,et al.  Structure Preserving Moment Matching for Port-Hamiltonian Systems: Arnoldi and Lanczos , 2011, IEEE Transactions on Automatic Control.

[24]  Paul Van Dooren,et al.  Model Reduction of MIMO Systems via Tangential Interpolation , 2005, SIAM J. Matrix Anal. Appl..

[25]  L. Meier,et al.  Approximation of linear constant systems , 1967, IEEE Transactions on Automatic Control.

[26]  Danny C. Sorensen,et al.  Projection Methods for Balanced Model Reduction , 2001 .

[27]  Thomas Wolf,et al.  Passivity Preserving Order Reduction of Linear Port-Hamiltonian Systems by Moment Matching , 2009 .

[28]  Arjan van der Schaft,et al.  Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity , 2010, Autom..

[29]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[30]  Arjan van der Schaft,et al.  Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..

[31]  Shankar P. Bhattacharyya,et al.  Controllability, observability and the solution of AX - XB = C , 1981 .

[32]  S. Campbell Singular Systems of Differential Equations , 1980 .

[33]  Alessandro Astolfi,et al.  Model reduction by moment matching, steady-state response and projections , 2010, 49th IEEE Conference on Decision and Control (CDC).

[34]  Paul Van Dooren,et al.  The Lanczos algorithm and Pad(cid:19)e approximations , 1995 .

[35]  Serkan Gugercin,et al.  Model reduction of large-scale systems by least squares , 2006 .

[36]  Arjan van der Schaft,et al.  Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems , 2011, Autom..

[37]  A. Astolfi,et al.  Balancing as a moment matching problem , 2012 .

[38]  Danny C. Sorensen,et al.  Passivity preserving model reduction via interpolation of spectral zeros , 2003, 2003 European Control Conference (ECC).

[39]  Alessandro Astolfi,et al.  Moment matching for nonlinear port Hamiltonian and gradient systems , 2013 .

[40]  H. Nicholson,et al.  On the structure of balanced and other principal representations of SISO systems , 1983 .

[41]  Alessandro Astolfi,et al.  Model Reduction by Moment Matching for Linear and Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[42]  A. Antoulas,et al.  A framework for the solution of the generalized realization problem , 2007 .

[43]  Eric James Grimme,et al.  Krylov Projection Methods for Model Reduction , 1997 .

[44]  Jacquelien M. A. Scherpen,et al.  Dissipativity preserving balancing for nonlinear systems - A Hankel operator approach , 2010, Syst. Control. Lett..

[45]  K. Chu The solution of the matrix equations AXB−CXD=E AND (YA−DZ,YC−BZ)=(E,F) , 1987 .

[46]  Kenji Fujimoto,et al.  Balanced Realization and Model Order Reduction for Port-Hamiltonian Systems , 2008 .

[47]  Athanasios C. Antoulas,et al.  A new result on passivity preserving model reduction , 2005, Syst. Control. Lett..