Numerically Stable Algorithms for Inversion of Block Tridiagonal and Banded Matrices

We provide a new representation for the inverse of block tridiagonal and banded matrices. The new representation is shown to be numerically stable over a variety of block tridiagonal matrices, in addition of being more computationally efficient than the previously proposed techniques. We provide two algorithms for commonly encountered problems that illustrate the usefulness of the results.

[1]  P. Rózsa,et al.  On the inverse of band matrices , 1987 .

[2]  E. Asplund,et al.  Inverses of Matrices $\{a_{ij}\}$ which Satisfy $a_{ij} = 0$ for $j > i+p$. , 1959 .

[3]  Raf Vandebril,et al.  A note on the representation and definition of semiseparable matrices , 2005, Numer. Linear Algebra Appl..

[4]  Sabine Van Huffel,et al.  Fast and stable two‐way algorithm for diagonal plus semi‐separable systems of linear equations , 2001 .

[5]  G. Meurant,et al.  ON COMPUTING INV BLOCK RECONDITIONINGS FOR THE CONJUGATE GRADIENT METHOD , 1986 .

[6]  大阪大学工学部 Technology reports of the Osaka University = 大阪大学工學報告 , 1951 .

[7]  Israel Koltracht,et al.  Integral Equation Method for the Continuous Spectrum Radial Schrödinger Equation , 1997 .

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  E. M. Godfrin,et al.  A method to compute the inverse of an n-block tridiagonal quasi-hermitian matrix , 1991 .

[10]  Francesco Romani,et al.  On the additive structure of the inverses of banded matrices , 1986 .

[11]  Pál Rózsa,et al.  On the Inverse of Block Tridiagonal Matrices with Applications to the Inverses of Band Matrices and Block Band Matrices , 1989 .

[12]  M. Anantram,et al.  Two-dimensional quantum mechanical modeling of nanotransistors , 2001, cond-mat/0111290.

[13]  Francesco Romani,et al.  PARALLEL SOLUTION OF BLOCK TRIDIAGONAL LINEAR-SYSTEMS , 1988 .

[14]  Reinhard Nabben,et al.  Decay Rates of the Inverse of Nonsymmetric Tridiagonal and Band Matrices , 1999, SIAM J. Matrix Anal. Appl..

[15]  William F. Moss,et al.  Decay rates for inverses of band matrices , 1984 .

[16]  Keith Bowden A DIRECT SOLUTION TO THE BLOCK TRIDIAGONAL MATRIX INVERSION PROBLEM , 1989 .

[17]  Leslie Greengard,et al.  On the Numerical Solution of Two-Point Boundary Value Problems , 1991 .

[18]  Shivkumar Chandrasekaran,et al.  A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices , 2004, Numerische Mathematik.

[19]  Pál Rózsa,et al.  On band matrices and their inverses , 1991 .

[20]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[21]  Gérard Meurant,et al.  A Review on the Inverse of Symmetric Tridiagonal and Block Tridiagonal Matrices , 1992, SIAM J. Matrix Anal. Appl..

[22]  Shivkumar Chandrasekaran,et al.  A fast and stable solver for recursively semi-separable systems of linear equations , 2001 .

[23]  S. O. Asplund Finite Boundary Value Problems Solved by Green's Matrix. , 1959 .

[24]  Methods of inverting tridiagonal matrices , 1973 .

[25]  Yuli Eidelman,et al.  Inversion formulas and linear complexity algorithm for diagonal plus semiseparable matrices , 1997 .

[26]  G. Meurant,et al.  On computingINV block preconditionings for the conjugate gradient method , 1986 .

[27]  Alle-Jan van der Veen,et al.  Fast Stable Solver for Sequentially Semi-separable Linear Systems of Equations , 2002, HiPC.

[28]  G. Golub,et al.  Block Preconditioning for the Conjugate Gradient Method , 1985 .

[29]  S. Chandrasekaran,et al.  Fast and stable eigendecomposition of symmetric banded plus semi-separable matrices , 2000 .