Firing Rate Homeostasis in Visual Cortex of Freely Behaving Rodents

[1]  G. Turrigiano,et al.  Synaptic and Intrinsic Homeostatic Mechanisms Cooperate to Increase L2/3 Pyramidal Neuron Excitability during a Late Phase of Critical Period Plasticity , 2013, The Journal of Neuroscience.

[2]  A. Maffei,et al.  Layer-Specific Experience-Dependent Rewiring of Thalamocortical Circuits , 2013, The Journal of Neuroscience.

[3]  Sara J. Aton,et al.  Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons , 2013, Proceedings of the National Academy of Sciences.

[4]  D. Katz,et al.  Sodium Concentration Coding Gives Way to Evaluative Coding in Cortex and Amygdala , 2012, The Journal of Neuroscience.

[5]  C. Piette,et al.  Inactivation of Basolateral Amygdala Specifically Eliminates Palatability-Related Information in Cortical Sensory Responses , 2012, The Journal of Neuroscience.

[6]  Mark Hübener,et al.  Critical-period plasticity in the visual cortex. , 2012, Annual review of neuroscience.

[7]  G. Turrigiano Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. , 2011, Annual review of neuroscience.

[8]  Y. Goda,et al.  Unraveling Mechanisms of Homeostatic Synaptic Plasticity , 2010, Neuron.

[9]  M. Bear,et al.  Relative Contribution of Feedforward Excitatory Connections to Expression of Ocular Dominance Plasticity in Layer 4 of Visual Cortex , 2010, Neuron.

[10]  Arianna Maffei,et al.  Critical Period for Inhibitory Plasticity in RodentBinocular V1 , 2010, The Journal of Neuroscience.

[11]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[12]  E. Brown,et al.  Activity in the barrel cortex during active behavior and sleep. , 2010, Journal of neurophysiology.

[13]  Siu Kang,et al.  Bidirectional plasticity in fast-spiking GABA circuits by visual experience , 2009, Nature.

[14]  G. Tononi,et al.  Cortical Firing and Sleep Homeostasis , 2009, Neuron.

[15]  Li I. Zhang,et al.  Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording , 2009, The Journal of Neuroscience.

[16]  G. Turrigiano,et al.  Synaptic Scaling Requires the GluR2 Subunit of the AMPA Receptor , 2009, The Journal of Neuroscience.

[17]  M. Bear,et al.  Thalamic activity that drives visual cortical plasticity , 2009, Nature Neuroscience.

[18]  S. Nelson,et al.  Strength through Diversity , 2008, Neuron.

[19]  G. Turrigiano The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses , 2008, Cell.

[20]  M. Bear,et al.  Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[22]  M. Stryker,et al.  Tumor Necrosis Factor-α Mediates One Component of Competitive, Experience-Dependent Plasticity in Developing Visual Cortex , 2008, Neuron.

[23]  Gina G. Turrigiano,et al.  Multiple Modes of Network Homeostasis in Visual Cortical Layer 2/3 , 2008, The Journal of Neuroscience.

[24]  Paul Miller,et al.  Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles , 2007, Proceedings of the National Academy of Sciences.

[25]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[26]  R. Reid,et al.  Homeostatic Regulation of Eye-Specific Responses in Visual Cortex during Ocular Dominance Plasticity , 2007, Neuron.

[27]  S. Nelson,et al.  Potentiation of cortical inhibition by visual deprivation , 2006, Nature.

[28]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[29]  G. Davis Homeostatic control of neural activity: from phenomenology to molecular design. , 2006, Annual review of neuroscience.

[30]  Jadin C. Jackson,et al.  Quantitative measures of cluster quality for use in extracellular recordings , 2005, Neuroscience.

[31]  B. Jones,et al.  From waking to sleeping: neuronal and chemical substrates. , 2005, Trends in pharmacological sciences.

[32]  G. Buzsáki,et al.  Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. , 2004, Journal of neurophysiology.

[33]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[34]  M. Bear,et al.  Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation , 2003, Nature Neuroscience.

[35]  Xiao-Jing Wang,et al.  Robust Spatial Working Memory through Homeostatic Synaptic Scaling in Heterogeneous Cortical Networks , 2003, Neuron.

[36]  M. Steriade,et al.  Neuronal Plasticity in Thalamocortical Networks during Sleep and Waking Oscillations , 2003, Neuron.

[37]  V. Murthy,et al.  Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons , 2002, Nature.

[38]  Niraj S. Desai,et al.  Critical periods for experience-dependent synaptic scaling in visual cortex , 2002, Nature Neuroscience.

[39]  J. Csicsvari,et al.  Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Steriade Impact of network activities on neuronal properties in corticothalamic systems. , 2001, Journal of neurophysiology.

[41]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[42]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[43]  C. Rittenhouse,et al.  Monocular deprivation induces homosynaptic long-term depression in visual cortex , 1999, Nature.

[44]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[45]  M. Bear,et al.  Experience-dependent modification of synaptic plasticity in visual cortex , 1996, Nature.

[46]  G. Turrigiano Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. , 2012, Cold Spring Harbor perspectives in biology.

[47]  Kenneth D. Miller,et al.  The Role of Constraints in Hebbian Learning , 1994, Neural Computation.

[48]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .