Amplifying Lower Bounds by Means of Self-Reducibility

We observe that many important computational problems in NC<sup>1</sup> share a simple self-reducibility property. We then show that, for any problem A having this self-reducibility property, A has polynomial size TC<sup>0</sup> circuits if and only if it has TC<sup>0</sup> circuits of size n<sup>1+isin</sup> for every isin>0 (counting the number of wires in a circuit as the size of the circuit). As an example of what this observation yields, consider the Boolean formula evaluation problem (BFE), which is complete for NC<sup>1</sup>. It follows from a lower bound of Impagliazzo, Paturi, and Saks, that BFE requires depth d TC<sup>0</sup> circuits of size n<sup>1+isin</sup> <sup>d</sup>. If one were able to improve this lower bound to show that there is some constant isin>0 such that every TC<sup>0</sup> circuit family recognizing BFE has size n<sup>1+isin</sup>, then it would follow that TC<sup>0</sup>neNC<sup>1</sup>. We also show that problems with small uniform constant- depth circuits have algorithms that simultaneously have small space and time bounds. We then make use of known time-space tradeoff lower bounds to show that SAT requires uniform depth d TC<sup>0</sup> and AC<sup>0</sup> [6] circuits of size n<sup>1+c</sup> for some constant c depending on d.

[1]  Eric Allender,et al.  Relationships Among PL, #L, and the Determinant , 1996, RAIRO Theor. Informatics Appl..

[2]  Aravind Srinivasan The value of strong inapproximability results for clique , 2000, STOC '00.

[3]  Moni Naor,et al.  Number-theoretic constructions of efficient pseudo-random functions , 2004, JACM.

[4]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[5]  Lars Engebretsen,et al.  Clique Is Hard To Approximate Within , 2000 .

[6]  Miklós Ajtai,et al.  A non-linear time lower bound for Boolean branching programs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[7]  Kousha Etessami Counting Quantifiers, Successor Relations, and Logarithmic Space , 1997, J. Comput. Syst. Sci..

[8]  A. Razborov Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .

[9]  Yuval Ishai,et al.  Cryptography in NC0 , 2004, SIAM J. Comput..

[10]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[11]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[12]  Johan Håstad The Shrinkage Exponent of de Morgan Formulas is 2 , 1998, SIAM J. Comput..

[13]  Samuel R. Buss Algorithms for Boolean Formula Evaluation and for Tree Contraction , 2007 .

[14]  Richard J. Lipton,et al.  Unbounded Fan-In Circuits and Associative Functions , 1985, J. Comput. Syst. Sci..

[15]  Subhash Khot,et al.  Improved inapproximability results for MaxClique, chromatic number and approximate graph coloring , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[16]  A. Razborov Unprovability of lower bounds on circuit size in certain fragments of bounded arithmetic , 1995 .

[17]  Subhash Khot,et al.  Better Inapproximability Results for MaxClique, Chromatic Number and Min-3Lin-Deletion , 2006, ICALP.

[18]  Lance Fortnow,et al.  Time-Space Tradeoffs for Satisfiability , 2000, J. Comput. Syst. Sci..

[19]  Michael E. Saks,et al.  Size-depth trade-offs for threshold circuits , 1993, SIAM J. Comput..

[20]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[21]  Neil Immerman,et al.  A First-Order Isomorphism Theorem , 1993, SIAM J. Comput..

[22]  Neil Immerman,et al.  On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..

[23]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[24]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1993, JACM.

[25]  Pavel Pudlák,et al.  Bounded-depth circuits: separating wires from gates , 2005, STOC '05.

[26]  Howard Straubing,et al.  Non-Uniform Automata Over Groups , 1990, Inf. Comput..

[27]  Richard J. Lipton,et al.  Unbounded fan-in circuits and associative functions , 1983, J. Comput. Syst. Sci..

[28]  NaorMoni,et al.  Number-theoretic constructions of efficient pseudo-random functions , 2004 .

[29]  Uriel Feige,et al.  Zero Knowledge and the Chromatic Number , 1998, J. Comput. Syst. Sci..

[30]  Michael E. Saks,et al.  Minimizing Disjunctive Normal Form Formulas and AC0 Circuits Given a Truth Table , 2008, SIAM J. Comput..

[31]  Kristoffer Arnsfelt Hansen,et al.  A New Characterization of ACC0 and Probabilistic CC0 , 2009, computational complexity.

[32]  Denis Thérien,et al.  Non-Uniform Automata Over Groups , 1987, Inf. Comput..

[33]  R. Shen,et al.  A new characterization of A5 , 2008 .

[34]  Heribert Vollmer,et al.  Introduction to Circuit Complexity: A Uniform Approach , 2010 .

[35]  Stephen A. Cook,et al.  Short Propositional Formulas Represent Nondeterministic Computations , 1988, Inf. Process. Lett..

[36]  Michael E. Saks,et al.  Super-linear time-space tradeoff lower bounds for randomized computation , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[37]  Eric Allender,et al.  A Uniform Circuit Lower Bound for the Permanent , 1994, SIAM J. Comput..

[38]  Heribert Vollmer,et al.  Nondeterministic NC 1 Computation. , 1996 .

[39]  Samuel R. Buss,et al.  The Boolean formula value problem is in ALOGTIME , 1987, STOC.

[40]  Benjamin Rossman,et al.  On the constant-depth complexity of k-clique , 2008, STOC.

[41]  N. Immerman,et al.  On uniformity within NC 1 . , 1988 .

[42]  Eric Allender,et al.  Reductions in Circuit Complexity: An Isomorphism Theorem and a Gap Theorem , 1998, J. Comput. Syst. Sci..

[43]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[44]  Eric Allender,et al.  Time-space tradeoffs in the counting hierarchy , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[45]  Dieter van Melkebeek,et al.  A Survey of Lower Bounds for Satisfiability and Related Problems , 2007, Found. Trends Theor. Comput. Sci..

[46]  Michal Koucký,et al.  Circuit Complexity of Regular Languages , 2007, Theory of Computing Systems.

[47]  Alexander A. Razborov,et al.  Natural Proofs , 2007 .

[48]  Aravind Srinivasan,et al.  On the approximability of clique and related maximization problems , 2003, J. Comput. Syst. Sci..

[49]  Alexander A. Razborov,et al.  Lower Bounds for Deterministic and Nondeterministic Branching Programs , 1991, FCT.

[50]  David Zuckerman Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number , 2007, Theory Comput..

[51]  Samuel R. Buss,et al.  An Optimal Parallel Algorithm for Formula Evaluation , 1992, SIAM J. Comput..

[52]  Kousha Etessami,et al.  Counting quantifiers, successor relations, and logarithmic space , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.

[53]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[54]  Richard J. Lipton,et al.  Lower Bounds for Constant Depth Circuits for Prefix Problems , 1983, ICALP.

[55]  MansourYishay,et al.  Constant depth circuits, Fourier transform, and learnability , 1993 .

[56]  Kristoffer Arnsfelt Hansen,et al.  A New Characterization of ACC^0 and Probabilistic CC^0 , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[57]  Eric Allender,et al.  Uniform constant-depth threshold circuits for division and iterated multiplication , 2002, J. Comput. Syst. Sci..

[58]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[59]  Heribert Vollmer,et al.  Introduction to Circuit Complexity , 1999, Texts in Theoretical Computer Science An EATCS Series.

[60]  Christopher B. Wilson On the Decomposability of NC and AC , 1990, SIAM J. Comput..

[61]  Manindra Agrawal The First-Order Isomorphism Theorem , 2001, FSTTCS.

[62]  Michael E. Saks,et al.  Time-space trade-off lower bounds for randomized computation of decision problems , 2003, JACM.

[63]  Heribert Vollmer,et al.  Nondeterministic NC1 Computation , 1998, J. Comput. Syst. Sci..

[64]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[65]  D. Melkebeek TIME-SPACE LOWER BOUNDS FOR NP-COMPLETE PROBLEMS , 2004 .

[66]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1989, 30th Annual Symposium on Foundations of Computer Science.

[67]  Johan Hå stad The Shrinkage Exponent of de Morgan Formulas is 2 , 1998 .

[68]  Mihir Bellare,et al.  Free Bits, PCPs, and Nonapproximability-Towards Tight Results , 1998, SIAM J. Comput..

[69]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[70]  E. Allender Arithmetic Circuits and Counting Complexity Classes , 2004 .

[71]  Eric Allender,et al.  Relationships among PL, #L, and the determinant , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[72]  J. Håstad Computational limitations of small-depth circuits , 1987 .

[73]  ApplebaumBenny,et al.  Cryptography in $NC^0$ , 2006 .

[74]  Eric Allender Cracks in the Defenses: Scouting Out Approaches on Circuit Lower Bounds , 2008, CSR.

[75]  Guy N. Rothblum,et al.  Verifying and decoding in constant depth , 2007, STOC '07.