Nickel-Cathoded Perovskite Solar Cells

Current lead halide perovskite solar cells use high work function (φ) precious metals, such as gold (φ = 5.1 eV), as the back cathode to maximize the attainable photovoltage. We report herein a set of perovskite-type solar cells that use nickel (φ = 5.04 eV), an earth-abundant element and non-precious metal, as back cathode and achieve the same open-circuit voltage as gold and an efficiency of 10.4%. This work opens a “nickel”-and-dimed (low-cost) way toward high-efficient perovskite solar cells.

[1]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[2]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[3]  Klaas Bakker,et al.  Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films. , 2006, The journal of physical chemistry. B.

[4]  He Yan,et al.  Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. , 2014, Journal of the American Chemical Society.

[5]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[6]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[7]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[8]  T. Xu,et al.  Rutile TiO2 nanowire-based perovskite solar cells. , 2014, Chemical communications.

[9]  M. Grätzel,et al.  A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. , 2014, Angewandte Chemie.

[10]  Mohammad Khaja Nazeeruddin,et al.  Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.

[11]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[12]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[13]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[14]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[15]  A. J. Frank,et al.  Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO(2) nanowires. , 2012, Angewandte Chemie.

[16]  Kai Zhu,et al.  Charge Transport and Recombination in Perovskite (CH3NH3)PbI3 Sensitized TiO2 Solar Cells , 2013 .

[17]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[18]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.