Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations
暂无分享,去创建一个
[1] W. Strauss,et al. Numerical solution of a nonlinear Klein-Gordon equation , 1978 .
[2] Matthias Ehrhardt,et al. Discrete transparent boundary conditions for the Schrödinger equation , 2001 .
[3] B. Herbst,et al. Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .
[4] Z. Fei,et al. Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .
[5] Michel C. Delfour,et al. Finite-difference solutions of a non-linear Schrödinger equation , 1981 .
[6] A. S. Fokas,et al. Analysis of the Global Relation for the Nonlinear Schrödinger Equation on the Half-line , 2003 .
[7] F. Mainardi,et al. Fractals and fractional calculus in continuum mechanics , 1997 .
[8] Houde Han,et al. Exact artificial boundary conditions for the Schrödinger equation in $R ^2$ , 2004 .
[9] A. V. Popov,et al. Implementation of transparent boundaries for numerical solution of the Schrödinger equation , 1991 .
[10] Christophe Besse,et al. Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation , 2003 .
[11] Christophe Besse,et al. A Relaxation Scheme for the Nonlinear Schrödinger Equation , 2004, SIAM J. Numer. Anal..
[12] A. Durán,et al. The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .
[13] Christophe Besse,et al. Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations , 2006, SIAM J. Numer. Anal..
[14] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[15] H. Hasimoto,et al. A soliton on a vortex filament , 1972, Journal of Fluid Mechanics.
[16] C. Peskin,et al. Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets. , 1994, The American journal of physiology.