Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations

The numerical approximation of one-dimensional cubic nonlinear Schrodinger equations on the whole real axis is studied in this paper. Based on the work of A. Boutet de Monvel, A.S. Fokas and D. Shepelsky [Lett. Math. Phys., 65(3): 199-212, 2003], a kind of exact nonreflecting boundary conditions are derived on the artificially introduced boundary points. The related numerical issues are discussed in detail. Several numerical tests are performed to demonstrate the behaviour of the proposed scheme.

[1]  W. Strauss,et al.  Numerical solution of a nonlinear Klein-Gordon equation , 1978 .

[2]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schrödinger equation , 2001 .

[3]  B. Herbst,et al.  Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .

[4]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[5]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[6]  A. S. Fokas,et al.  Analysis of the Global Relation for the Nonlinear Schrödinger Equation on the Half-line , 2003 .

[7]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[8]  Houde Han,et al.  Exact artificial boundary conditions for the Schrödinger equation in $R ^2$ , 2004 .

[9]  A. V. Popov,et al.  Implementation of transparent boundaries for numerical solution of the Schrödinger equation , 1991 .

[10]  Christophe Besse,et al.  Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation , 2003 .

[11]  Christophe Besse,et al.  A Relaxation Scheme for the Nonlinear Schrödinger Equation , 2004, SIAM J. Numer. Anal..

[12]  A. Durán,et al.  The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .

[13]  Christophe Besse,et al.  Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations , 2006, SIAM J. Numer. Anal..

[14]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[15]  H. Hasimoto,et al.  A soliton on a vortex filament , 1972, Journal of Fluid Mechanics.

[16]  C. Peskin,et al.  Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets. , 1994, The American journal of physiology.