Live-cell Imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy

Publisher Summary This chapter discusses microscope technologies for imaging living fungal cells at high spatial resolution and reviews the vital fluorescent dyes that are proving useful for analyzing the cell biology of filamentous fungi with the confocal laser-scanning microscope (CLSM). Definitions of important practical aspects that need to be taken into account for optimal live-cell imaging at high spatial resolution with the CLSM and indications of future directions for live-cell imaging of filamentous fungi are described in the chapter. A range of microscope technologies have been developed over the past 20 years that allow the imaging of living cells at high spatial resolution using optical sectioning. These technologies include CLSM , spinning-disk confocal microscopy, two-photon microscopy, and deconvolution microscopy. The advantages and disadvantages of these optical-sectioning methods for imaging living fungal cells are summarized in the chapter. Of these types of microscopies, CLSM has been the most popular, and this chapter focuses on results obtained using this extremely powerful imaging technique.

[1]  A. Ashford,et al.  Uptake and compartmentalisation of fluorescent probes byPisolithus tinctorius hyphae: evidence for an anion transport mechanism at the tonoplast but not for fluid-phase endocytosis , 1997, Protoplasma.

[2]  E. Selker,et al.  HP1 is essential for DNA methylation in neurospora. , 2004, Molecular cell.

[3]  M L Walsh,et al.  Localization of mitochondria in living cells with rhodamine 123. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[4]  F. Koll,et al.  Mitochondrial membrane potential and ageing in Podospora anserina , 2001, Mechanisms of Ageing and Development.

[5]  J. Lübke,et al.  FM1-43 dye ultrastructural localization in and release from frog motor nerve terminals. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Geitmann,et al.  The vesicle trafficking network and tip growth in fungal hyphae. , 2001 .

[7]  Takeo Tanaami,et al.  Confocal Fluorescent Microscopy Using a Nipkow Scanner , 1999 .

[8]  Atsushi Miyawaki,et al.  Fluorescence imaging of physiological activity in complex systems using GFP-based probes , 2003, Current Opinion in Neurobiology.

[9]  C. Hawes,et al.  Endocytosis in plants: fact or artefact? , 1995 .

[10]  J. McIntosh,et al.  Kinesin from the plant pathogenic fungus Ustilago maydis is involved in vacuole formation and cytoplasmic migration. , 1998, Journal of cell science.

[11]  M. Valdivieso,et al.  Isolation and characterization of Saccharomyces cerevisiae mutants resistant to Calcofluor white , 1988, Journal of bacteriology.

[12]  Michael Freitag,et al.  GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. , 2004, Fungal genetics and biology : FG & B.

[13]  L. Chen Chapter 7 Fluorescent Labeling of Mitochondria , 1988 .

[14]  P. Schwille,et al.  Fluorescence correlation spectroscopy for the detection and study of single molecules in biology. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[15]  A. Trewavas,et al.  Confocal microscopy of living fungal hyphae microinjected with Ca2+-sensitive fluorescent dyes , 1993 .

[16]  J. Shaw,et al.  Mitochondrial dynamics in yeast. , 1998, Annual review of cell and developmental biology.

[17]  Nuno Moreno,et al.  Imaging plant cells by two-photon excitation , 2004, Protoplasma.

[18]  N. Read,et al.  Live-cell imaging of endocytosis during conidial germination in the rice blast fungus, Magnaporthe grisea. , 2002, Fungal genetics and biology : FG & B.

[19]  W. Betz,et al.  Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  A. Geitmann,et al.  Cell Biology of Plant and Fungal Tip Growth—Getting to the Point , 2000, Plant Cell.

[21]  R. Sentandreu,et al.  Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. , 1983, Journal of general microbiology.

[22]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[23]  A. Kenworthy,et al.  Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. , 2001, Methods.

[24]  D. Jacobson,et al.  Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. , 2002, Fungal genetics and biology : FG & B.

[25]  Richard N. Day,et al.  Visualizing protein interactions in living cells using digitized GFP imaging and FRET microscopy. , 1999, Methods in cell biology.

[26]  Á. Durán,et al.  Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization , 1985, Journal of bacteriology.

[27]  Neil A. R. Gow,et al.  Biology of the fungal cell , 2001 .

[28]  Hoffmann,et al.  Endocytosis and membrane turnover in the germ tube of uromyces fabae , 1998, Fungal genetics and biology : FG & B.

[29]  M. Levin,et al.  Fluorescence correlation spectroscopy and quantitative cell biology. , 2004, Differentiation; research in biological diversity.

[30]  R. Lew,et al.  Calcium and tip growth inNeurospora crassa , 2000, Protoplasma.

[31]  K. König,et al.  Multiphoton microscopy in life sciences , 2000, Journal of microscopy.

[32]  R. Lew,et al.  Regulation of the tip-high [Ca2+] gradient in growing hyphae of the fungus Neurospora crassa. , 2001, European journal of cell biology.

[33]  H. Riezman,et al.  Yeast endocytosis assays. , 1991, Methods in enzymology.

[34]  W. Betz,et al.  Monitoring secretory membrane with FM1-43 fluorescence. , 1999, Annual review of neuroscience.

[35]  O. Papasouliotis,et al.  Pronounced cytoplasmic pH gradients are not required for tip growth in plant and fungal cells. , 1997, Journal of cell science.

[36]  W. Betz,et al.  Imaging exocytosis and endocytosis , 1996, Current Opinion in Neurobiology.

[37]  J. Lippincott-Schwartz,et al.  Studying protein dynamics in living cells , 2001, Nature Reviews Molecular Cell Biology.

[38]  J. Dijksterhuis Confocal microscopy of Spitzenkörper dynamics during growth and differentiation of rust fungi , 2003, Protoplasma.

[39]  S. Paddock,et al.  Confocal laser scanning microscopy. , 1999, BioTechniques.

[40]  P. Lum,et al.  DiOC6 staining reveals organelle structure and dynamics in living yeast cells. , 1993, Cell motility and the cytoskeleton.

[41]  J. Bereiter-Hahn,et al.  Dimethylaminostyrylmethylpyridiniumiodine (daspmi) as a fluorescent probe for mitochondria in situ. , 1976, Biochimica et biophysica acta.

[42]  I. Heath,et al.  Analysis of three separate probes suggests the absence of endocytosis in Neurospora crassa hyphae. , 2002, Fungal genetics and biology : FG & B.

[43]  Alan J. Lacey Light microscopy in biology , 1989 .

[44]  R. Howard,et al.  Utility of cytoplasmic fluorescent proteins for live-cell imaging of Magnaporthe grisea in planta , 2002, Mycologia.

[45]  Jason R Swedlow,et al.  Quantitative fluorescence microscopy and image deconvolution. , 2007, Methods in cell biology.

[46]  A. Wheals,et al.  Conidial anastomosis tubes in Colletotrichum. , 2003, Fungal genetics and biology : FG & B.

[47]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[48]  N. Read,et al.  Does endocytosis occur in fungal hyphae? , 2003, Fungal genetics and biology : FG & B.

[49]  K. Czymmek,et al.  Confocal microscopy in mycological research , 1994 .

[50]  S. Emr,et al.  A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast , 1995, The Journal of cell biology.

[51]  R. Lew,et al.  Calcium gradient dependence of Neurospora crassa hyphal growth. , 2003, Microbiology.

[52]  N. Read,et al.  FM‐dyes as experimental probes for dissecting vesicle trafficking in living plant cells , 2004, Journal of microscopy.

[53]  P. Hickey Imaging vesicle trafficking and organelle dynamics in living fungal hyphae , 2001 .

[54]  A. Diaspro Confocal and two-photon microscopy : foundations, applications, and advances , 2001 .

[55]  N. Read,et al.  Confocal microscopy of FM4‐64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae , 2000, Journal of microscopy.

[56]  R H Berg,et al.  Evaluation of spectral imaging for plant cell analysis , 2004, Journal of microscopy.

[57]  A. Trewavas,et al.  Imaging and measurement of cytosolic free calcium in plant and fungal cells , 1992 .

[58]  D. Murphy Fundamentals of Light Microscopy and Electronic Imaging , 2001 .

[59]  K. Oparka,et al.  Plant cell biology: a practical approach , 1994 .

[60]  Cole,et al.  Structure, function, and motility of vacuoles in filamentous fungi , 1998, Fungal genetics and biology : FG & B.

[61]  Chris Hawes,et al.  Plant Cell Biology , 2001 .

[62]  T. Gadella,et al.  Fluorescence lifetime imaging microscopy (FLIM): instrumentation and applications , 1999 .