Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode

[1]  Kazuo Yamamoto,et al.  Advanced Characterization Techniques for Sulfide‐Based Solid‐State Lithium Batteries , 2023, Advanced Energy Materials.

[2]  Yu‐Guo Guo,et al.  Designing Bidirectionally Functional Polymer Electrolytes for Stable Solid Lithium Metal Batteries , 2023, Advanced Energy Materials.

[3]  Huolin L. Xin,et al.  Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries , 2023, Nature Energy.

[4]  Yingxiang Liu,et al.  Piezo robotic hand for motion manipulation from micro to macro , 2023, Nature Communications.

[5]  Zhuo Li,et al.  Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries , 2023, Nature Communications.

[6]  Min Lin,et al.  Gas induced formation of inactive Li in rechargeable lithium metal batteries , 2023, Nature Communications.

[7]  Junda Huang,et al.  Hydrofluoric Acid‐Removable Additive Optimizing Electrode Electrolyte Interphases with Li+ Conductive Moieties for 4.5 V Lithium Metal Batteries , 2023, Advanced Functional Materials.

[8]  X. Tao,et al.  Highly Thermostable Interphase Enables Boosting High-Temperature Lifespan for Metallic Lithium Batteries. , 2023, Small.

[9]  S. Bent,et al.  Correlating the Formation Protocols of Solid Electrolyte Interphases with Practical Performance Metrics in Lithium Metal Batteries , 2023, ACS Energy Letters.

[10]  Feixiang Wu,et al.  Moderately concentrated electrolyte enabling high-performance lithium metal batteries with a wide working temperature range , 2023, Journal of Energy Chemistry.

[11]  Feng Yu,et al.  Thiol-Ene crosslinked cellulose-based gel polymer electrolyte with good structural integrity for high cycling performance lithium-metal battery , 2022, Chinese Chemical Letters.

[12]  Xiulin Fan,et al.  An Additive-Enabled Ether-Based Electrolyte to Realize Stable Cycling of High-Voltage Anode-Free Lithium Metal Batteries , 2022, SSRN Electronic Journal.

[13]  Aiping Wang,et al.  Regulating Solvation Structure in Gel Polymer Electrolytes with Covalent Organic Frameworks for Lithium Metal Batteries , 2022, Energy Storage Materials.

[14]  Y. Qu,et al.  Sustainable production of hydrogen with high purity from methanol and water at low temperatures , 2022, Nature Communications.

[15]  Xiulin Fan,et al.  Tackling realistic Li+ flux for high-energy lithium metal batteries , 2022, Nature Communications.

[16]  Xiulin Fan,et al.  Anionic Coordination Manipulation of Multilayer Solvation Structure Electrolyte for High‐Rate and Low‐Temperature Lithium Metal Battery , 2022, Advanced Energy Materials.

[17]  Fei Li,et al.  Ion Transport Kinetics in Low‐Temperature Lithium Metal Batteries , 2022, Advanced Energy Materials.

[18]  Lixia Yuan,et al.  Selection of Redox Mediators for Reactivating Dead Li in Lithium Metal Batteries , 2022, Advanced Energy Materials.

[19]  Fei Wang,et al.  Mild and Controllable Solid Electrolyte Interphase Formation for High-Voltage Lithium Metal Batteries in a Wide-Temperature Range from -40 °C to 80 °C , 2022, SSRN Electronic Journal.

[20]  L. Ci,et al.  A Competitive Solvation of Ternary Eutectic Electrolytes Tailoring the Electrode/Electrolyte Interphase for Lithium Metal Batteries. , 2022, ACS nano.

[21]  Yong Cheng,et al.  Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption , 2022, Nature Communications.

[22]  Xin Liu,et al.  Nanostructure of the Interphase Layer between a Single Li Dendrite and Sulfide Electrolyte in All-Solid-State Li Batteries , 2022, ACS Energy Letters.

[23]  Yong Yang,et al.  Quantifying the Evolution of Inactive Li/Lithium Hydride and Their Correlations in Rechargeable Anode-free Li Batteries. , 2022, Nano letters.

[24]  Huolin L. Xin,et al.  Dual Passivation of Cathode and Anode through Electrode–Electrolyte Interface Engineering Enables Long-Lifespan Li Metal–SPAN Batteries , 2022, ACS Energy Letters.

[25]  Yongling An,et al.  Lithiophilic Zn-doped CuO/ZnO Nanoarrays Modified 3D Scaffold Inducing Lithium Lateral Plating Achieving Highly Stable Lithium Metal Anode , 2022, Chemical Engineering Journal.

[26]  Quan-hong Yang,et al.  Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery , 2022, Energy Storage Materials.

[27]  J. Nan,et al.  In Situ Grown MnO2 Nanoflower Arrays on Ni Foam (MnO2@NF) as 3D Lithiophilic Hosts for a Stable Lithium Metal Anode , 2022, ACS Applied Energy Materials.

[28]  Dechao Wang,et al.  Carbon/Lithium Composite Anode for Advanced Lithium Metal Batteries: Design, Progress, In Situ Characterization, and Perspectives , 2022, Advanced Energy Materials.

[29]  Wengao Zhao,et al.  A Polymerized‐Ionic‐Liquid‐Based Polymer Electrolyte with High Oxidative Stability for 4 and 5 V Class Solid‐State Lithium Metal Batteries , 2022, Advanced Energy Materials.

[30]  Huolin L. Xin,et al.  Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries , 2022, Nature Nanotechnology.

[31]  Yong Cheng,et al.  Enhanced Cyclability of Lithium Metal Anodes Enabled by Anti-aggregation of Lithiophilic Seeds. , 2022, Nano letters.

[32]  Yongcai Qiu,et al.  Ultralong-life lithium metal batteries enabled by decorating robust hybrid interphases on 3D layered framworks , 2022, Chinese Chemical Letters.

[33]  Hui‐Ming Cheng,et al.  In-situ imaging techniques for advanced battery development , 2022, Materials Today.

[34]  Jiabao Li,et al.  In-situ electro-polymerization of L-tyrosine enables ultrafast, long cycle life for lithium metal battery , 2022, Chinese Chemical Letters.

[35]  Dingcai Wu,et al.  A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes , 2022, Nature Nanotechnology.

[36]  Jiawei Zhong,et al.  SiO2 nanofiber composite gel polymer electrolyte by in-situ polymerization for stable Li metal batteries , 2022, Chinese Chemical Letters.

[37]  X. Tao,et al.  Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries , 2022, Science.

[38]  P. Mukherjee,et al.  “Dead” lithium or back from the “dead”? , 2022, Joule.

[39]  Cheng Lu,et al.  Cotton pad derived 3D lithiophilic carbon host for robust Li metal anode: In-situ generated ionic conductive Li3N protective decoration , 2022, Chemical Engineering Journal.

[40]  Suojiang Zhang,et al.  Fabrication of asymmetric bilayer solid-state electrolyte with boosted ion transport enabled by charge-rich space charge layer for -20~70°C lithium metal battery , 2022, Nano Energy.

[41]  Kyu-Nam Jung,et al.  Elastomeric electrolytes for high-energy solid-state lithium batteries , 2022, Nature.

[42]  Zonghai Chen,et al.  Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator , 2022, Nature communications.

[43]  Y. Ye,et al.  Capturing the swelling of solid-electrolyte interphase in lithium metal batteries , 2022, Science.

[44]  Guoxiu Wang,et al.  Hierarchical Oα-rich Co3O4 nanoarray anchored on Ni foam with superior lithiophilicity enabling ultrastable lithium metal batteries , 2022, Chemical Engineering Journal.

[45]  Jiecai Han,et al.  Talcum-doped composite separator with superior wettability and heatproof properties for high-rate lithium metal batteries , 2022, Chinese Chemical Letters.

[46]  Qiang Zhang,et al.  A Successive Conversion-Deintercalation Delithiation Mechanism for Practical Composite Lithium Anodes. , 2021, Journal of the American Chemical Society.

[47]  Yuegang Zhang,et al.  Construction of Moisture‐Stable Lithium Diffusion‐Controlling Layer toward High Performance Dendrite‐Free Lithium Anode , 2021, Advanced Functional Materials.

[48]  Bingkun Guo,et al.  A composite PEO electrolyte with amide-based polymer matrix for suppressing lithium dendrite growth in all-solid-state lithium battery , 2021, Chinese Chemical Letters.

[49]  Kang Xu,et al.  Quantitatively analyzing the failure processes of rechargeable Li metal batteries , 2021, Science advances.

[50]  X. Shen,et al.  Inhibition of lithium dendrites and dead lithium by an ionic liquid additive toward safe and stable lithium metal anodes , 2021, Chinese Chemical Letters.

[51]  Henghui Zhou,et al.  Interwoven nickel(II)-dimethylglyoxime nanowires in 3D nickel foam for dendrite-free lithium deposition , 2021, Chinese Chemical Letters.

[52]  Yongfu Tang,et al.  In Situ Visualization of Lithium Penetration through Solid Electrolyte and Dead Lithium Dynamics in Solid-State Lithium Metal Batteries. , 2021, ACS nano.

[53]  Guangmin Zhou,et al.  High-Performance Lithium Metal Batteries with a Wide Operating Temperature Range in Carbonate Electrolyte by Manipulating Interfacial Chemistry , 2021, ACS Energy Letters.

[54]  G. Cui,et al.  Synchrotron X-Ray Tomography for Rechargeable Battery Research: Fundamentals, Setups and Applications. , 2021, Small methods.

[55]  P. Imrich,et al.  In-situ TEM investigation of toughening in Silicon at small scales , 2021, Materials Today.

[56]  Qiaobao Zhang,et al.  Lithium Storage in Bowl-like Carbon: The Effect of Surface Curvature and Space Geometry on Li Metal Deposition , 2021 .

[57]  L. Nazar,et al.  Lithium Ytterbium-Based Halide Solid Electrolytes for High Voltage All-Solid-State Batteries , 2021 .

[58]  Zachary D. Hood,et al.  Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes , 2021, Nature Materials.

[59]  Yongyao Xia,et al.  Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition , 2021 .

[60]  Huamin Zhang,et al.  New insights into the formation of silicon–oxygen layer on lithium metal anode via in situ reaction with tetraethoxysilane , 2021, Journal of Energy Chemistry.

[61]  F. Kang,et al.  Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields. , 2021, Chemical reviews.

[62]  X. Tao,et al.  Visualizing the Sensitive Lithium with Atomic Precision: Cryogenic Electron Microscopy for Batteries. , 2021, Accounts of chemical research.

[63]  X. Tao,et al.  Silicious nanowires enabled dendrites suppression and flame retardancy for advanced lithium metal anodes , 2021 .

[64]  X. Tao,et al.  In-situ construction of a Mg-modified interface to guide uniform lithium deposition for stable all-solid-state batteries , 2021 .

[65]  Ping Liu,et al.  An anode-free Li metal cell with replenishable Li designed for long cycle life , 2021, Energy Storage Materials.

[66]  Cheng Wang,et al.  Excited State Energy Transfer in Metal‐Organic Frameworks , 2021, Advanced materials.

[67]  Shuang Cheng,et al.  Long-Life Dendrite-Free Lithium Metal Electrode Achieved by Constructing a Single Metal Atom Anchored in a Diffusion Modulator Layer. , 2021, Nano letters.

[68]  Cuiling Yu,et al.  Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries , 2021 .

[69]  Xianluo Hu,et al.  Thermoregulating Separators Based on Phase‐Change Materials for Safe Lithium‐Ion Batteries , 2021, Advanced materials.

[70]  Tongchao Liu,et al.  Rejuvenating dead lithium supply in lithium metal anodes by iodine redox , 2021, Nature Energy.

[71]  Huamin Zhang,et al.  Endogenous Symbiotic Li3N / Cellulose Skin to Extend the Cycle Life of Lithium Anode. , 2021, Angewandte Chemie.

[72]  Yi Cui,et al.  3D Artificial Solid‐Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator–Metal–Insulator Layered Heterostructures , 2021, Advanced materials.

[73]  Ping Liu,et al.  Tailoring Electrolyte Solvation for Li Metal Batteries Cycled at Ultra-Low Temperature , 2021, Nature Energy.

[74]  Ji‐Guang Zhang,et al.  Lithium Metal Anodes with Nonaqueous Electrolytes. , 2020, Chemical reviews.

[75]  Z. Zuo,et al.  Spontaneously Splitting Copper Nanowires into Quantum Dots on Graphdiyne for Suppressing Lithium Dendrites , 2020, Advanced materials.

[76]  Jitao Chen,et al.  Asymmetric double-layer composite electrolyte with enhanced ionic conductivity and interface stability for all-solid-state lithium metal batteries , 2020 .

[77]  K. Kang,et al.  Probing Lithium Metals in Batteries by Advanced Characterization and Analysis Tools , 2020, Advanced Energy Materials.

[78]  Yan Yu,et al.  g‐C3N4 Derivative Artificial Organic/Inorganic Composite Solid Electrolyte Interphase Layer for Stable Lithium Metal Anode , 2020, Advanced Energy Materials.

[79]  T. Chen,et al.  Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film , 2020 .

[80]  J. Goodenough,et al.  Thermodynamic Understanding of Li-Dendrite Formation , 2020 .

[81]  Shuru Chen,et al.  Pressure-tailored lithium deposition and dissolution in lithium metal batteries , 2020, Nature Energy.

[82]  X. Tao,et al.  In Situ Construction of a LiF‐Enriched Interface for Stable All‐Solid‐State Batteries and its Origin Revealed by Cryo‐TEM , 2020, Advanced materials.

[83]  Deyu Wang,et al.  Artificial nucleation sites with stable SEI for Li metal anodes by aggressive Al pulverization , 2020 .

[84]  Yu‐Guo Guo,et al.  Revealing Interfacial Evolution of Lithium Dendrite and Its Solid Electrolyte Interphase Shell in Quasi-Solid-State Lithium Batteries. , 2020, Angewandte Chemie.

[85]  B. Dunn,et al.  Understanding and applying coulombic efficiency in lithium metal batteries , 2020 .

[86]  K. He,et al.  In Situ TEM Study on Conversion‐Type Electrodes for Rechargeable Ion Batteries , 2020, Advanced materials.

[87]  Jiaqi Huang,et al.  Waterproof lithium metal anode enabled by cross-linking encapsulation. , 2020, Science bulletin.

[88]  G. Ning,et al.  Raptor determines β-cell identity and plasticity independent of hyperglycemia in mice , 2020, Nature Communications.

[89]  Qiang Zhang,et al.  Can Lithium Metal Anode Cycle at 90°C in Liquid Electrolyte? , 2020, Angewandte Chemie.

[90]  Chunsheng Wang,et al.  Self-Regulated Phenomenon of Inorganic Artificial SEI for Lithium Metal Batteries. , 2020, Nano letters.

[91]  David G. Mackanic,et al.  Tortuosity Effects in Lithium-Metal Host Anodes , 2020 .

[92]  Yan Yu,et al.  A Mixed Lithium‐Ion Conductive Li2S/Li2Se Protection Layer for Stable Lithium Metal Anode , 2020, Advanced Functional Materials.

[93]  X. Tao,et al.  An ultrastable lithium metal anode enabled by designed metal fluoride spansules , 2020, Science Advances.

[94]  C. Dwyer,et al.  Imaging Beam‐Sensitive Materials by Electron Microscopy , 2020, Advanced materials.

[95]  J. Goodenough,et al.  Behavior of Solid Electrolyte in Li-Polymer Battery with NMC Cathode via in-situ Scanning Electron Microscopy. , 2020, Nano letters.

[96]  Yutao Li,et al.  Li metal deposition and stripping in a solid-state battery via Coble creep , 2020, Nature.

[97]  Panpan Zhang,et al.  Emerging 2D Materials Produced via Electrochemistry , 2020, Advanced materials.

[98]  X. Tao,et al.  Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy , 2020, Nature Communications.

[99]  Xiao Ji,et al.  High interfacial-energy interphase promoting safe lithium metal batteries. , 2020, Journal of the American Chemical Society.

[100]  R. Cao,et al.  Hollow CuS Nanoboxes as Li‐Free Cathode for High‐Rate and Long‐Life Lithium Metal Batteries , 2020, Advanced Energy Materials.

[101]  K. Zaghib,et al.  In situ observation of solid electrolyte interphase evolution in a lithium metal battery , 2019, Communications Chemistry.

[102]  Qian Sun,et al.  Natural SEI-Inspired Dual-Protective Layers via Atomic/Molecular Layer Deposition for Long-Life Metallic Lithium Anode , 2019, Matter.

[103]  Pralav P. Shetty,et al.  Distinct Nanoscale Interphases and Morphology of Lithium Metal Electrodes Operating at Low Temperatures. , 2019, Nano letters.

[104]  Eric J. Dufek,et al.  Glassy Li metal anode for high-performance rechargeable Li batteries , 2019, Nature Materials.

[105]  Liquan Chen,et al.  In-situ visualization of lithium plating in all-solid-state lithium-metal battery , 2019, Nano Energy.

[106]  Hongkyung Lee,et al.  Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization , 2019, Nature Energy.

[107]  Feng Li,et al.  Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. , 2019, Small.

[108]  Allen Pei,et al.  Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy , 2019, Nature Energy.

[109]  Jiajie Liang,et al.  Superlithiophilic Amorphous SiO2–TiO2 Distributed into Porous Carbon Skeleton Enabling Uniform Lithium Deposition for Stable Lithium Metal Batteries , 2019, Advanced science.

[110]  Guangmin Zhou,et al.  Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes , 2019, Nano Energy.

[111]  X. Tao,et al.  Synthesis of Diverse Green Carbon Nanomaterials through Fully Utilizing Biomass Carbon Source Assisted by KOH. , 2019, ACS applied materials & interfaces.

[112]  Ya‐Xia Yin,et al.  Nitriding-Interface-Regulated Lithium Plating Enables Flame-Retardant Electrolytes for High-Voltage Lithium Metal Batteries. , 2019, Angewandte Chemie.

[113]  Guangmin Zhou,et al.  An air-stable and waterproof lithium metal anode enabled by wax composite packaging. , 2019, Science bulletin.

[114]  Dingchang Lin,et al.  Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries , 2019, Nature Communications.

[115]  Ji‐Guang Zhang,et al.  Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions , 2019, Nature Nanotechnology.

[116]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[117]  Chenglin Yan,et al.  Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery , 2019, Nature Communications.

[118]  Nabraj Bhattarai,et al.  In situ transmission electron microscopy observations of rechargeable lithium ion batteries , 2019, Nano Energy.

[119]  Tingzheng Hou,et al.  Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes , 2019, Science Advances.

[120]  Yayuan Liu,et al.  Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. , 2019, Nano letters.

[121]  C. Felser,et al.  Cover Picture: Discovery of Elusive K 4 O 6 , a Compound Stabilized by Configurational Entropy of Polarons (Angew. Chem. Int. Ed. 1/2019) , 2019, Angewandte Chemie International Edition.

[122]  Y. Meng,et al.  Quantifying inactive lithium in lithium metal batteries , 2018, Nature.

[123]  L. Luo,et al.  In Situ Transmission Electron Microsopy of Oxide Shell-Induced Pore Formation in (De)lithiated Silicon Nanowires , 2018, ACS Energy Letters.

[124]  Yayuan Liu,et al.  Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode , 2018, Nature Communications.

[125]  Kaiming Liao,et al.  Developing a “Water‐Defendable” and “Dendrite‐Free” Lithium‐Metal Anode Using a Simple and Promising GeCl4 Pretreatment Method , 2018, Advanced materials.

[126]  L. Gu,et al.  Advanced Transmission Electron Microscopy for Electrode and Solid-Electrolyte Materials in Lithium-Ion Batteries , 2018, Small Methods.

[127]  Bin Liu,et al.  Advancing Lithium Metal Batteries , 2018 .

[128]  Lu Li,et al.  Self-heating–induced healing of lithium dendrites , 2018, Science.

[129]  Nian Liu,et al.  Visualizing Battery Reactions and Processes by Using In Situ and In Operando Microscopies , 2018 .

[130]  Yong‐Sheng Hu,et al.  Atomic‐Scale Monitoring of Electrode Materials in Lithium‐Ion Batteries using In Situ Transmission Electron Microscopy , 2017 .

[131]  Yi Yu,et al.  Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy , 2017, Science.

[132]  S. Choudhury,et al.  Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries , 2017 .

[133]  Jun Lu,et al.  Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy , 2017, Nature Communications.

[134]  Xueyuan Zhang,et al.  Review—Promises and Challenges of In Situ Transmission Electron Microscopy Electrochemical Techniques in the Studies of Lithium Ion Batteries , 2017 .

[135]  Jun Lu,et al.  State-of-the-art characterization techniques for advanced lithium-ion batteries , 2017, Nature Energy.

[136]  Xin-Bing Cheng,et al.  Advanced Micro/Nanostructures for Lithium Metal Anodes , 2017, Advanced science.

[137]  M. Bazant,et al.  Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams , 2017 .

[138]  Guangyuan Zheng,et al.  Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. , 2017, Nano letters.

[139]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[140]  M. Wohlfahrt‐Mehrens,et al.  Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study , 2014 .

[141]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[142]  R. Nuzzo,et al.  Recent developments and applications of electron microscopy to heterogeneous catalysis. , 2012, Chemical Society reviews.

[143]  S. Choudhury,et al.  Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries. , 2018, Angewandte Chemie.

[144]  N. Yao,et al.  Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery , 2015 .