Evidence of Shock Metamorphism Effects in Allochthonous Breccia Deposits from the Colônia Crater, São Paulo, Brazil

The 3.6 km-diameter Colonia impact crater, centred at 2352'03"S and 4642'27"W, lies 40 km to the south-west of the S?o Paulo city. The structure was formed on the crystalline basement rocks and displays a bowl-shaped with steeper slope near the top that decreases gently toward the centre of the crater. Over recent years were drilled two boreholes inside the crater, which reached a maximum depth of 142 m and 197 m. Geological profile suggests four different lithological associations: 1) unshocked crystalline basement rocks (197 - 140 m); 2) fractured/brecciated basement rocks (140 - 110 m); 3) polymictic allochthonous breccia deposits (110 - 40 m); and 4) post-impact deposits (40 - 0 m). Petrographic characterisation of the polymictic allochthonous breccia reveals a series of distinctive shock-metamorphic features, including, among others, planar deformation features in quartz, feldspar and mica, ballen silica, granular texture in zircon and melt-bearing impact rocks. The occurrence of melt particles and very high-pressure phase transformation in suevite breccia suggest a shock pressure regime higher than 60 GPa.

[1]  A. Wittmann,et al.  Shock‐metamorphosed zircon in terrestrial impact craters , 2006 .

[2]  Falko Langenhorst,et al.  Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience* , 1996 .

[3]  C. Koeberl,et al.  Continental Drilling and the Study of Impact Craters and Processes — an ICDP Perspective , 2007 .

[4]  D. Stoeffler Deformation and transformation of rock-forming minerals by natural and experimental shock processes. I - Behavior of minerals under shock compression. , 1972 .

[5]  F. A. Neves Estudo da depressao circular de Colonia-sp pelo metodo sismico , 1998 .

[6]  G. R. Sadowski Tectonica da Serra de Cubatão, SP , 1974 .

[7]  K. Prakash,et al.  Terrestrial Impact Structures and their Confirmation: Example from Dhala Structure, central India , 2009 .

[8]  A. Crósta Impact Structures in Brazil , 1987 .

[9]  M. Ledru,et al.  The Colônia structure, São Paulo, Brazil , 2011 .

[10]  Susan Werner Kieffer,et al.  Shock metamorphism of the Coconino Sandstone at Meteor Crater, Arizona , 1971 .

[11]  F. Almeida,et al.  The Precambrian Evolution of the South American Cratonic Margin South of the Amazon River , 1973 .

[12]  C. Koeberl,et al.  Characterisation of ballen quartz and cristobalite in impact breccias: new observations and constraints on ballen formation , 2009 .

[13]  H. Schneider Shock-induced mechanical deformations in biotites from crystalline rocks of the ries crater (Southern Germany) , 1972 .

[14]  H. Leroux,et al.  Shocked and thermally metamorphosed zircon from the Vredefort impact structure, South Africa: a transmission electron microscopic study , 2002 .

[15]  M. Ledru,et al.  Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial , 2009 .

[16]  C. Riccomini,et al.  The Colônia Astrobleme, Brasil , 1991 .

[17]  W. E. Galloway,et al.  Reply to the comments of W. Helland-Hansen on "Towards the standardization of sequence stratigraphy" by Catuneanu et al. (Earth-Sciences Review 92(2009)1-33) , 2009 .

[18]  S. Reddy,et al.  Resolution of impact‐related microstructures in lunar zircon: A shock‐deformation mechanism map , 2012 .

[19]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[20]  F. Cruz,et al.  Paleoclimate Changes during the last 100,000 yr from a Record in the Brazilian Atlantic Rainforest region and Interhemispheric Comparison , 2005, Quaternary Research.

[21]  Christian Koeberl,et al.  The convincing identification of terrestrial meteorite impact structures: What works, what doesn't, and why , 2010 .

[22]  Falko Langenhorst,et al.  Shock metamorphism of some minerals: Basic introduction and microstructural observations , 2002 .

[23]  H. Leroux,et al.  Experimental shock deformation in zircon: a transmission electron microscopic study , 1999 .

[24]  F. Almeida,et al.  The origin and evolution of the South American Platform , 2000 .

[25]  B. D. B. Neves,et al.  Influence of basement structures on the evolution of the major sedimentary basins of Brazil: a case of tectonic heritage , 1984 .

[26]  R. Grieve,et al.  Observations at terrestrial impact structures: Their utility in constraining crater formation , 2004 .

[27]  D. Stöffler Glasses formed by hypervelocity impact , 1984 .

[28]  G. Orton,et al.  Radiative signatures from impact of comet Shoemaker‐Levy‐9 on Jupiter , 1994 .

[29]  J. Spray Localized shock- and friction-induced melting in response to hypervelocity impact , 1998, Geological Society, London, Special Publications.

[30]  B. D. B. Neves,et al.  The geologic evolution of South America during the Archean and Early Proterozoic , 1982 .

[31]  D. Stöffler Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters , 1971 .

[32]  C. Riccomini,et al.  A cratera de colônia como Parque Temático e georrecurso , 2006 .

[33]  Bevan M. French,et al.  Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures , 1998 .