Phase-Synchronization Early Epileptic Seizure Detector VLSI Architecture

A low-power VLSI processor architecture that computes in real time the magnitude and phase-synchronization of two input neural signals is presented. The processor is a part of an envisioned closed-loop implantable microsystem for adaptive neural stimulation. The architecture uses three CORDIC processing cores that require shift-and-add operations but no multiplication. The 10-bit processor synthesized and prototyped in a standard 1.2 V 0.13 μm CMOS technology utilizes 41,000 logic gates. It dissipates 3.6 μW per input pair, and provides 1.7 kS/s per-channel throughput when clocked at 2.5 MHz. The power scales linearly with the number of input channels or the sampling rate. The efficacy of the processor in early epileptic seizure detection is validated on human intracranial EEG data.

[1]  Kaushik Roy,et al.  The design and hardware implementation of a low-power real-time seizure detection algorithm , 2009, Journal of neural engineering.

[2]  F. Mormann,et al.  Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients , 2000 .

[3]  Mohamad Sawan,et al.  A Novel Low-Power-Implantable Epileptic Seizure-Onset Detector , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[4]  F. Mormann,et al.  Seizure prediction: the long and winding road. , 2007, Brain : a journal of neurology.

[5]  Yann LeCun,et al.  Classification of patterns of EEG synchronization for seizure prediction , 2009, Clinical Neurophysiology.

[6]  R. Genov,et al.  256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes , 2009, IEEE Journal of Solid-State Circuits.

[7]  Liang-Gee Chen,et al.  Sub-microwatt correlation integral processor for implantable closed-loop epileptic neuromodulator , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[8]  K. Sridharan,et al.  50 Years of CORDIC: Algorithms, Architectures, and Applications , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  D. Gupta,et al.  Narrowband vs. Broadband Phase Synchronization Analysis Applied to Independent Components of Ictal and Interictal EEG , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[10]  Steve S. Chung,et al.  Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy , 2010, Epilepsia.

[11]  Karim Abdelhalim,et al.  The 128-Channel Fully Differential Digital Integrated Neural Recording and Stimulation Interface , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[12]  A. Schulze-Bonhage,et al.  How well can epileptic seizures be predicted? An evaluation of a nonlinear method. , 2003, Brain : a journal of neurology.

[13]  Michael X Cohen,et al.  Assessing transient cross-frequency coupling in EEG data , 2008, Journal of Neuroscience Methods.

[14]  José Luis Perez Velazquez,et al.  Experimental observation of increased fluctuations in an order parameter before epochs of extended brain synchronization , 2011, Journal of biological physics.

[15]  Pedram Mohseni,et al.  An activity-dependent brain microstimulation SoC with integrated 23nV/rtHz neural recording front-end and 750nW spike discrimination processor , 2010, 2010 Symposium on VLSI Circuits.

[16]  M. Morrell,et al.  Intracranial stimulation therapy for epilepsy , 2009, Neurotherapeutics.

[17]  Felice T. Sun,et al.  Responsive cortical stimulation for the treatment of epilepsy , 2011, Neurotherapeutics.

[18]  G. Vachtsevanos,et al.  Epileptic Seizures May Begin Hours in Advance of Clinical Onset A Report of Five Patients , 2001, Neuron.

[19]  Roman Genov,et al.  Algorithmic Delta-Sigma-modulated FIR filter. , 2006 .

[20]  Ivan Osorio,et al.  High Frequency Thalamic Stimulation for Inoperable Mesial Temporal Epilepsy , 2007, Epilepsia.

[21]  Andreas Schulze-Bonhage,et al.  Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction. , 2006, Chaos.

[22]  R. Genov,et al.  VLSI multivariate phase synchronization epileptic seizure detector , 2011, 2011 5th International IEEE/EMBS Conference on Neural Engineering.

[23]  A. Schulze-Bonhage,et al.  Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic , 2004 .

[24]  Karim Abdelhalim,et al.  A phase synchronization and magnitude processor VLSI architecture for adaptive neural stimulation , 2010, 2010 Biomedical Circuits and Systems Conference (BioCAS).

[25]  Kunjan Patel,et al.  Low power real-time seizure detection for ambulatory EEG , 2009, 2009 3rd International Conference on Pervasive Computing Technologies for Healthcare.

[26]  B. Litt,et al.  Seizure Prediction: Its Evolution and Therapeutic Potential , 2009 .

[27]  C. Elger,et al.  Seizure prediction by non‐linear time series analysis of brain electrical activity , 1998, The European journal of neuroscience.

[28]  W. Art Chaovalitwongse,et al.  Adaptive epileptic seizure prediction system , 2003, IEEE Transactions on Biomedical Engineering.

[29]  Naveen Verma,et al.  A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System , 2010, IEEE Journal of Solid-State Circuits.

[30]  Ivan Osorio,et al.  Analog seizure detection and performance evaluation , 2006, IEEE Transactions on Biomedical Engineering.

[31]  S. Schiff,et al.  Decreased Neuronal Synchronization during Experimental Seizures , 2002, The Journal of Neuroscience.

[32]  A. Murro,et al.  Implantation of a Closed-Loop Stimulation in the Management of Medically Refractory Focal Epilepsy , 2005, Stereotactic and Functional Neurosurgery.