Chemical reaction mechanism, microstructural characteristics and mechanical properties of in situ (α-Al2O3+ZrB2)/Al composites

[1]  P. An,et al.  Improvement of particles distribution of in-situ 5 vol% TiB2 particulates reinforced Al-4.5Cu alloy matrix composites with ultrasonic vibration treatment , 2017 .

[2]  D. Golberg,et al.  High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures , 2017 .

[3]  J. Schoenung,et al.  Influence of particle size and spatial distribution of B4C reinforcement on the microstructure and mechanical behavior of precipitation strengthened Al alloy matrix composites , 2016 .

[4]  I. Dinaharan,et al.  Development of empirical relationships for prediction of mechanical and wear properties of AA6082 aluminum matrix composites produced using friction stir processing , 2016 .

[5]  M. R. Toroghinejad,et al.  Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing , 2016 .

[6]  A. Chauhan,et al.  Characterization of hybrid aluminum matrix composites for advanced applications – A review , 2016 .

[7]  M. Brochu,et al.  Consolidation of aluminum-based metal matrix composites via spark plasma sintering , 2015 .

[8]  Guoqing Xiao,et al.  Mechanism and microstructural evolution of combustion synthesis of ZrB2–Al2O3 composite powders , 2015 .

[9]  M. Zakeri,et al.  Mechanochemical synthesis of Al2O3–ZrB2–ZrO2 nanocomposite powder , 2014 .

[10]  B. Dikici,et al.  The effect of sintering time on synthesis of in situ submicron α-Al2O3 particles by the exothermic reactions of CuO particles in molten pure Al , 2013 .

[11]  Zonghan Xie,et al.  Microstructure and high temperature wear of the aluminum matrix composites fabricated by reaction from Al–ZrO2–B elemental powders , 2012 .

[12]  B. Xiao,et al.  In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al-TiO2 system , 2011 .

[13]  Hengzhi Wang,et al.  Study on the reaction mechanism and mechanical properties of aluminum matrix composites fabricated in an Al–ZrO2–B system , 2011 .

[14]  N. Hussain,et al.  In situ processing and aging behaviour of an aluminium/Al2O3 composite , 2011 .

[15]  Hengzhi Wang,et al.  In situ fabrication of (α-Al2O3 + Al3Zr)/Al composites in an Al–ZrO2 system , 2010 .

[16]  F. Karimzadeh,et al.  Synthesis of titanium diboride reinforced alumina matrix nanocomposite by mechanochemical reaction of Al-TiO2-B2O3 , 2010 .

[17]  Lai‐Chang Zhang,et al.  Thermal stability and crystallization kinetics of mechanically alloyed TiC/Ti-based metallic glass matrix composite , 2006 .

[18]  Swapan Das,et al.  Sintering behaviour of self-propagating high temperature synthesised ZrB2–Al2O3 composite powder , 2006 .

[19]  M. Y. Yau,et al.  Formation of nanostructured eutectic network in α-Al2O3 reinforced Al–Cu alloy matrix composite , 2003 .

[20]  C. F. Feng,et al.  In-situ P/M Al/(ZrB2+Al2O3) MMCs: Processing, microstructure and mechanical characterization , 1999 .