Pragmatics of the Knowledge Level

new hypotheis test observable new evidence abstract finding focus trigger specific finding FIGURE 5.11: Introducing nding abstractions In addition, syndromatic abstraction could be considered as a fourth type of abstraction. In syndromatic abstraction, a cluster of ndings is treated as one aggregate nding. Clustering of ndings is probably the most e cient way of limiting the number of hypotheses in the di erential. For example, the combination of physical stress and retro-sternal pain triggers the hypothesis angina pectoris. Retro-sternal pain in isolation would generate all ischaemic heart diseases and possibly some additional ones as well. These four types of abstraction can be seen as a special type of di erentiation of the abstract inference, which we have called inference di erentiation (cf. Sec. 5.3). In this case, abstract can be di erentiated into four sub-inferences, based on the type of domain knowledge used by the inferences (see Fig. 5.12). Finding abstractions Operation Addition of knowledge source Addition of specialised role (\abstract nding") Method Knowledge di erentiation Criteria Computational Chapter 5. Model Construction 89

[1]  David Harel,et al.  Statecharts: A Visual Formalism for Complex Systems , 1987, Sci. Comput. Program..

[2]  Allen Newell,et al.  GPS, a program that simulates human thought , 1995 .

[3]  D. Diaper,et al.  Knowledge Elicitation: Principles, Techniques and Applications , 1989 .

[4]  Edward H. Shortliffe,et al.  ONCOCIN: An Expert System for Oncology Protocol Management , 1981, IJCAI.

[5]  Ian M. Neale,et al.  First generation expert systems: a review of knowledge acquisition methodologies , 1988, The Knowledge Engineering Review.

[6]  Guus Schreiber,et al.  On Problems with the Knowledge Level Perspective , 1991 .

[7]  Jan Wielemaker,et al.  Shelley: computer-aided knowledge engineering , 1992 .

[8]  Larry J. Eshelman,et al.  MOLE: A Tenacious Knowledge-Acquisition Tool , 1987, Int. J. Man Mach. Stud..

[9]  Bob J. Wielinga,et al.  The Expertise of Novice Problem Solvers , 1986, ECAI.

[10]  Randall Davis,et al.  Diagnostic Reasoning Based on Structure and Behavior , 1984, Artif. Intell..

[11]  Frank van Harmelen,et al.  Criteria for Choosing Representation Languages and Control Regimes for Expert Systems , 1984, The Knowledge Engineering Review.

[12]  Gill Smith,et al.  Object-oriented analysis , 1988, WADAS '88.

[13]  Joost Breuker,et al.  Analysing system-user cooperation in KADS , 1992 .

[14]  Mina-Jaqueline Schachter-Radig,et al.  Applying the KADS Methodology to Develop a Knowledge Based System: NetHandler , 1988, ECAI.

[15]  William J. Clancey,et al.  Acquiring, representing, and evaluating a competence model of diagnostic strategy , 1993 .

[16]  Angi Voß,et al.  OFFICE-PLAN: Tackling the Synthesis-Frontier , 1989, GWAI.

[17]  Philip Rademakers,et al.  Mapping a Knowledge Level Analysis onto a Computational Framework , 1990, ECAI.

[18]  Nigel Shadbolt,et al.  Using Generalised Directive Models in Knowledge Acquisition , 1992, EKAW.

[19]  John P. McDermott,et al.  SALT: A Knowledge Acquisition Language for Propose-and-Revise Systems , 1993, Artif. Intell..

[20]  Edward Yourdon,et al.  Managing the structured techniques , 1980 .

[21]  Ton de Jong,et al.  Knowledge acquisition for an integrated project management system , 1988, Inf. Process. Manag..

[22]  Lawrence M. Fagan,et al.  Use of a Domain Model to Drive an Interactive Knowledge-Editing Tool , 1987, Int. J. Man Mach. Stud..

[23]  Ronald J. Brachman,et al.  ON THE EPISTEMOLOGICAL STATUS OF SEMANTIC NETWORKS , 1979 .

[24]  Bob J. Wielinga,et al.  Integrating Qualitative Reasoning Approaches , 1988, ECAI.

[25]  Johanna D. Moore,et al.  Enhanced Maintenance and Explanation of Expert Systems Through Explicit Models of Their Development , 1984, IEEE Transactions on Software Engineering.

[26]  Bob J. Wielinga,et al.  Models of Expertise , 1986, ECAI.

[27]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[28]  Nils J. Nilsson,et al.  Logic and Artificial Intelligence , 1991, Artif. Intell..

[29]  William J. Clancey,et al.  Model Construction Operators , 1992, Artif. Intell..

[30]  Ramesh S. Patil,et al.  Artificial intelligence techniques for diagnostic reasoning in medicine , 1988 .

[31]  B. Chandrasekaran,et al.  Generic tasks as building blocks for knowledge-based systems: the diagnosis and routine design examples , 1988, The Knowledge Engineering Review.

[32]  H. J. Paton History of Western Philosophy and its Connection with Political and Social Circumstances from the Earliest Times to the Present Day , 1948 .

[33]  Sanjay Mittal,et al.  CRSL: A Language for Classificatory Problem Solving and Uncertainty Handling , 1986, AI Mag..

[34]  Jon Sticklen,et al.  Problem-solving architecture at the knowledge level , 1990, Journal of experimental and theoretical artificial intelligence (Print).

[35]  Allen Newell,et al.  The Knowledge Level , 1989, Artif. Intell..

[36]  Thomas R. Gruber,et al.  The Acquisition of Strategic Knowledge , 1989 .

[37]  Richard Fikes,et al.  The role of frame-based representation in reasoning , 1985, CACM.

[38]  Marc Linster Knowledge acquisition based on explicit methods of problem solving , 1992 .

[39]  Jean-Paul Krivine,et al.  Explaining Reasoning from Knowledge Level Models , 1990, ECAI.

[40]  Larry Kerschberg,et al.  Expert Database Systems , 1987 .

[41]  William J. Clancey,et al.  NEOMYCIN: Reconfiguring a Rule-Based Expert System for Application to Teaching , 1981, IJCAI.

[42]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[43]  Frank van Harmelen,et al.  A Conceptual Modelling Framework for Knowledge-level Reflection , 1991, AI Commun..

[44]  William J. Clancey,et al.  The Epistemology of a Rule-Based Expert System - A Framework for Explanation , 1981, Artif. Intell..

[45]  Nigel Shadbolt,et al.  Knowledge Based Knowledge Acquisition: The Next Generation of Support Tools , 1990 .

[46]  Ramanathan V. Guha,et al.  Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project , 1990 .

[47]  Bob J. Wielinga,et al.  On the mulplicity of learning to solve problems , 1990 .

[48]  Guus Schreiber,et al.  Towards a unification of knowledge modelling approaches , 1993 .

[49]  Larry Eshelman,et al.  MOLE: A Knowledge-Acquisition Tool for Cover-and-Differentiate Systems , 1988 .

[50]  Uwe Drouven,et al.  Competence Assessment in Configuration Tasks , 1990, AI Commun..

[51]  James E. Rumbaugh,et al.  Object-Oriented Modelling and Design , 1991 .

[52]  Marc Linster,et al.  Use of KADS to create a conceptual model of the ONCOCIN task , 1992 .

[53]  M. Boden Arti cial Intelligence and Natural Man , 1977 .

[54]  Bob J. Wielinga,et al.  Structured Analysis of Knowledge , 1987, Int. J. Man Mach. Stud..

[55]  Jonathan Killin The Management and Maintenance of an Operational KADS System Development , 1992, EKAW.

[56]  Mark A. Musen Automated generation of model-based knowledge acquisition tools , 1989 .

[57]  Peter P. Chen The Entity-Relationship Model: Towards a unified view of Data , 1976 .

[58]  B. Chandrasekaran,et al.  Design Problem Solving: A Task Analysis , 1990, AI Mag..

[59]  Frank van Harmelen,et al.  (ML)2: A Formal Language for KADS Models , 1992, ECAI.

[60]  Diederich Wermser,et al.  A Sales Assistant for Chemical Measurement Equipment (SEARCHEM) , 1990, Konzeption und Einsatz von Umweltinformationssystemen.

[61]  Barry W. Boehm,et al.  A spiral model of software development and enhancement , 1986, Computer.

[62]  Barbara Hayes-Roth,et al.  A Blackboard Architecture for Control , 1985, Artif. Intell..

[63]  Guus Schreiber,et al.  StatCons: Knowledge Acquisition in a Complex Domain , 1988, European Conference on Artificial Intelligence.

[64]  Bert Bredeweg,et al.  Knowledge and expertise in expert systems , 1988 .

[65]  Jan Treur,et al.  Formal Specification of Compositional Architectures , 1992, ECAI.

[66]  Tom DeMarco,et al.  Controlling Software Projects , 1982 .

[67]  Michael J. Freiling,et al.  Ontological Analysis: An Ongoing Experiment , 1987, Int. J. Man Mach. Stud..

[68]  John McDermott,et al.  Usable and reusable programming constructs , 1991 .

[69]  Tom DeMarco,et al.  Structured Analysis and System Specification , 1978 .

[70]  Bob J. Wielinga,et al.  Interpretation of Verbal Data for Knowledge Acquisition , 1984, ECAI.

[71]  Joost Breuker,et al.  A Case Study in Structured Knowledge Acquisition , 1985, IJCAI.

[72]  Pietro Torasso,et al.  Integrating Models of the Correct Behavior into Abductive Diagnosis , 1990, ECAI.

[73]  Emilie M. Roth,et al.  Cognitive Task Analysis: An Approach to Knowledge Acquisition for Intelligent System Design , 1989 .

[74]  John McDermott,et al.  Preliminary steps toward a taxonomy of problem-solving methods , 1993 .

[75]  Serge Abiteboul,et al.  IFO: A Formal Semantic Database Model , 1987, ACM Trans. Database Syst..

[76]  Zhijun He,et al.  A Survey of the Expert System Tool ZDEST-2 , 1988, ECAI.

[77]  M. W. Wheeler,et al.  Automatic knowledge acquisition for expert systems , 1990, Proceedings of the 1990 Symposium on Applied Computing.

[78]  Samson W. Tu,et al.  A multiple-method knowledge-acquisition shell for the automatic generation of knowledge-acquisition tools , 1992 .

[79]  Kurt Konolige,et al.  Abduction Versus Closure in Causal Theories , 1992, Artif. Intell..

[80]  Ronald J. Brachman,et al.  An overview of the KL-ONE Knowledge Representation System , 1985 .

[81]  B. Chandrasekaran,et al.  Generic Tasks for Knowledge-Based Reasoning: The "Right" Level of Abstraction for Knowledge Acquisition , 1987, Int. J. Man Mach. Stud..

[82]  Edward Yourdon,et al.  Modern structured analysis , 1989 .

[83]  Bob J. Wielinga,et al.  KADS: a modelling approach to knowledge engineering , 1992 .