Scaling laws as a tool of materials informatics

[1]  B. Platzer,et al.  Book Review: William B. Krantz, Scaling Analysis in Modeling Transport and Reaction Processes – A Systematic Approach to Model Building and the Art of Approximation , 2009 .

[2]  J. Fourier Théorie analytique de la chaleur , 2009 .

[3]  Krishna Rajan,et al.  Application-Driven Data Analysis , 2009 .

[4]  P. Mendez,et al.  Advanced Scaling Techniques for the Modeling of Materials Processing , 2009 .

[5]  Zbigniew R Struzik,et al.  Universal scaling law in human behavioral organization. , 2007, Physical review letters.

[6]  Á. D́ıaz,et al.  100 Years of dimensional analysis: New steps toward empirical law deduction , 2007, 0709.3584.

[7]  Todd Emrick,et al.  Capillary Wrinkling of Floating Thin Polymer Films , 2007, Science.

[8]  William B. Krantz Scaling Analysis in Modeling Transport and Reaction Processes , 2007 .

[9]  Kim F. Ferris,et al.  Materials informatics : Fast track to new materials , 2007 .

[10]  Yvon Le Page,et al.  Data Mining in and around Crystal Structure Databases , 2006 .

[11]  David Cebon,et al.  Engineering Materials Informatics , 2006 .

[12]  Krishna Rajan,et al.  Linking length scales via materials informatics , 2006 .

[13]  Yong Li,et al.  Predicting materials properties and behavior using classification and regression trees , 2006 .

[14]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[15]  Warren H. Hunt Materials informatics: Growing from the Bio World , 2006 .

[16]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[17]  F. Ordóñez,et al.  Scaling Laws From Statistical Data and Dimensional Analysis , 2005 .

[18]  Phillip B. Messersmith,et al.  Bioinspired antifouling polymers , 2005 .

[19]  R. Smith,et al.  A computational search for ductilizing additives to Mo , 2005 .

[20]  K. N. Seetharamu,et al.  Convection Heat Transfer , 2005 .

[21]  G A Vignaux,et al.  Some Examples of Dimensional Analysis in Operations Research and Statistics , 2005 .

[22]  M. Kokar Determining arguments of invariant functional descriptions , 2004, Machine Learning.

[23]  Simon A. Levin,et al.  Scale and Scaling in Ecological and Economic Systems , 2003 .

[24]  T. Faug,et al.  Varying Dam Height to Shorten the Run-Out of Dense Avalanche Flows: Developing a Scaling Law from Laboratory Experiments , 2003 .

[25]  C. Geankoplis,et al.  Transport processes and separation process principles : (includes unit operations) , 2003 .

[26]  Valery B. Kokshenev Observation of mammalian similarity through allometric scaling laws , 2003 .

[27]  R. Gencay,et al.  Scaling, Self-Similarity and Multifractality in FX Markets , 2002 .

[28]  Giuseppina C. Gini,et al.  The Importance of Scaling in Data Mining for Toxicity Prediction , 2002, J. Chem. Inf. Comput. Sci..

[29]  Ramakrishna Ramaswamy,et al.  Segmentation of genomic DNA through entropic divergence: power laws and scaling. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Thomas W. Eagar,et al.  Strain energy distribution in ceramic-to-metal joints , 2002 .

[31]  Jonathan A. Dantzig,et al.  Modeling in Materials Processing , 2001 .

[32]  C. L. Tucker,et al.  Modeling In Materials processing: Contents , 2001 .

[33]  G. A. Vignaux,et al.  Dimensional Analysis in Operations Research , 2001 .

[34]  Takashi Washio,et al.  Enhancing the Plausibility of Law Equation Discovery , 2000, ICML.

[35]  Doyle,et al.  Power laws, highly optimized tolerance, and generalized source coding , 2000, Physical review letters.

[36]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[37]  Takashi Washio,et al.  Extension of Dimensional Analysis for Scale-types and its Application to Discovery of Admissible Models of Complex Processes , 1999 .

[38]  W. Deen Analysis Of Transport Phenomena , 1998 .

[39]  Gianni Astarita,et al.  Dimensional analysis, scaling, and orders of magnitude , 1997 .

[40]  G. I. Barenblatt Scaling: Self-similarity and intermediate asymptotics , 1996 .

[41]  Kenneth Man-kam Yip,et al.  Model Simplification by Asymptotic Order of Magnitude Reasoning , 1993, Artif. Intell..

[42]  B. C. Kenney,et al.  On the validity of empirical power laws , 1993 .

[43]  D. Muggeridge,et al.  Ice pressures on vertical and sloping structures through dimensional analysis and similarity theory , 1993 .

[44]  C. Tien Annual Review of Heat Transfer , 1993 .

[45]  Andrea P. Reverberi,et al.  Improving the statistical accuracy of dimensional analysis correlations for precise coefficient estimation and optimal design of experiments , 1991 .

[46]  A statistical procedure for model building in dimensional analysis , 1990 .

[47]  M. M. Chen SCALES, SIMILITUDE, AND ASYMPTOTIC CONSIDERATIONS IN CONVECTIVE HEAT TRANSFER , 1990 .

[48]  J. R. Radbill,et al.  Similitude and Approximation Theory , 1986 .

[49]  K. Holsapple,et al.  Crater ejecta scaling laws - Fundamental forms based on dimensional analysis , 1983 .

[50]  Morton M. Denn,et al.  Process Fluid Mechanics , 1979 .

[51]  Some limitations of dimensional analysis and power laws , 1978 .

[52]  J. Szekely,et al.  Rate phenomena in process metallurgy , 1971 .

[53]  William A Quade,et al.  Dimensional analysis for economists , 1968 .

[54]  W. R. Stahl,et al.  Dimensional analysis in mathematical biology. II , 1962 .

[55]  W. R. Stahl Dimensional analysis in mathematical biology I. General discussion , 1961 .

[56]  N. C. Dimensional Analysis , 1932, Nature.

[57]  E. Buckingham On Physically Similar Systems; Illustrations of the Use of Dimensional Equations , 1914 .

[58]  Simon Newcomb,et al.  Note on the Frequency of Use of the Different Digits in Natural Numbers , 1881 .