Efficient Multiparty Quantum Secret Sharing with Greenberger?Horne?Zeilinger States

An efficient multiparty quantum secret sharing scheme is proposed with Greenberger–Horne–Zeilinger (GHZ) states following some ideas in quantum dense coding. The agents take the single-photon measurements on the photons received for eavesdropping check and exploit the four local unitary operations I, σz, σx and iσy to code their message. This scheme has the advantage of high capacity as each GHZ state can carry two bits of information. The parties do not need to announce the measuring bases for almost all the photons, which will reduce the classical information exchanged largely. The intrinsic efficiency for qubits and the total efficiency both approach the maximal values.

[1]  Wang Yan,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[2]  Xiao Li,et al.  Increasing the Efficiencies of Random-Choice-Based Quantum Communication Protocols with Delayed Measurement , 2004 .

[3]  Hong-Yu Zhou,et al.  An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs , 2005 .

[4]  Fuguo Deng,et al.  Bidirectional quantum secret sharing and secret splitting with polarized single photons , 2005, quant-ph/0504119.

[5]  Cao Hai-Jing,et al.  Quantum Secure Direct Communication with W State , 2006 .

[6]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[7]  Gao Ting,et al.  A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties , 2005 .

[8]  F. L. Yan,et al.  A scheme for secure direct communication using EPR pairs and teleportation , 2004 .

[9]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[10]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[11]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[12]  Yan Feng-Li,et al.  Controlled quantum teleportation and secure direct communication , 2005 .

[13]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[14]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  Guang-Can Guo,et al.  Quantum secret sharing without entanglement , 2002 .

[16]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[17]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[18]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[19]  Cai Qing-yu,et al.  Deterministic secure communication without using entanglement , 2004 .

[20]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[21]  A Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[22]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[23]  C. P. Sun,et al.  Quasi-spin-wave quantum memories with a dynamical symmetry. , 2003, Physical review letters.

[24]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[25]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[26]  Zhang Zhan-jun,et al.  Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations , 2005 .

[27]  Hoi-Kwong Lo,et al.  Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security , 2004, Journal of Cryptology.

[28]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[29]  K. Peng,et al.  Multiparty secret sharing of quantum information based on entanglement swapping , 2004 .

[30]  Zhang Zhan-jun,et al.  Quantum dialogue revisited , 2005 .

[31]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.