SNARE-mediated membrane fusion

[1]  B. L. de Groot,et al.  Exocytosis requires asymmetry in the central layer of the SNARE complex , 2000, The EMBO journal.

[2]  P. Brennwald,et al.  Testing the 3Q:1R "rule": mutational analysis of the ionic "zero" layer in the yeast exocytic SNARE complex reveals no requirement for arginine. , 2000, Molecular biology of the cell.

[3]  J. Rothman,et al.  Compartmental specificity of cellular membrane fusion encoded in SNARE proteins , 2000, Nature.

[4]  J. Rothman,et al.  Topological restriction of SNARE-dependent membrane fusion , 2000, Nature.

[5]  J. Rothman,et al.  Functional architecture of an intracellular membrane t-SNARE , 2000, Nature.

[6]  J. Littleton,et al.  The C2b Domain of Synaptotagmin Is a Ca2+–Sensing Module Essential for Exocytosis , 2000, The Journal of cell biology.

[7]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[8]  C. Lévêque,et al.  Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Rothman,et al.  Close Is Not Enough , 2000, The Journal of cell biology.

[10]  R. Fairman,et al.  Structural analysis of the neuronal SNARE protein syntaxin-1A. , 2000, Biochemistry.

[11]  D. Langosch,et al.  A Conserved Membrane-spanning Amino Acid Motif Drives Homomeric and Supports Heteromeric Assembly of Presynaptic SNARE Proteins* , 2000, The Journal of Biological Chemistry.

[12]  J. Rothman,et al.  Snarepins Are Functionally Resistant to Disruption by Nsf and αSNAP , 2000, The Journal of cell biology.

[13]  V. A. Klenchin,et al.  Priming in exocytosis: attaining fusion-competence after vesicle docking. , 2000, Biochimie.

[14]  Sejal M. Patel,et al.  SNAREs Contribute to the Specificity of Membrane Fusion , 2000, Neuron.

[15]  Richard H. Scheller,et al.  Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex , 2000, Nature.

[16]  E. Neher,et al.  Exocytotic mechanism studied by truncated and zero layer mutants of the C‐terminus of SNAP‐25 , 2000, The EMBO journal.

[17]  T. Martin,et al.  The C Terminus of SNAP25 Is Essential for Ca2+-dependent Binding of Synaptotagmin to SNARE Complexes* , 2000, The Journal of Biological Chemistry.

[18]  V. Scheuss,et al.  Syntaphilin A Syntaxin-1 Clamp that Controls SNARE Assembly , 2000, Neuron.

[19]  R. Scheller,et al.  Nsec1 Binds a Closed Conformation of Syntaxin1a , 2000, The Journal of cell biology.

[20]  E. Neher,et al.  Inhibition of SNARE Complex Assembly Differentially Affects Kinetic Components of Exocytosis , 1999, Cell.

[21]  M. Charlton,et al.  Activity-dependent changes in partial VAMP complexes during neurotransmitter release , 1999, Nature Neuroscience.

[22]  R. Regazzi,et al.  Disruption of Rab3–calmodulin interaction, but not other effector interactions, prevents Rab3 inhibition of exocytosis , 1999, The EMBO journal.

[23]  A. Brunger,et al.  Crystal Structure of the Cytosolic C2a-C2b Domains of Synaptotagmin III , 1999, The Journal of cell biology.

[24]  J. Rothman,et al.  Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Rothman,et al.  Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Fasshauer,et al.  Kinetics of Synaptotagmin Responses to Ca2+ and Assembly with the Core SNARE Complex onto Membranes , 1999, Neuron.

[27]  H. Schulman,et al.  Calmodulin and Protein Kinase C Increase Ca2+-stimulated Secretion by Modulating Membrane-attached Exocytic Machinery* , 1999, The Journal of Biological Chemistry.

[28]  J. Rothman,et al.  The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. , 1999, Molecular cell.

[29]  T. Südhof,et al.  A conformational switch in syntaxin during exocytosis: role of munc18 , 1999, The EMBO journal.

[30]  M. Mann,et al.  Control of the terminal step of intracellular membrane fusion by protein phosphatase 1. , 1999, Science.

[31]  L. Rice,et al.  Crystal structure of the vesicular transport protein Sec17: implications for SNAP function in SNARE complex disassembly. , 1999, Molecular cell.

[32]  A. Brunger,et al.  NSF N-terminal domain crystal structure: models of NSF function. , 1999, Molecular cell.

[33]  K. Misura,et al.  Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein , 1999, Nature Cell Biology.

[34]  S. Pfeffer Transport-vesicle targeting: tethers before SNAREs , 1999, Nature Cell Biology.

[35]  Sejal M. Patel,et al.  SNARE Complex Formation Is Triggered by Ca2+ and Drives Membrane Fusion , 1999, Cell.

[36]  R. Jahn,et al.  A stable interaction between syntaxin 1a and synaptobrevin 2 mediated by their transmembrane domains , 1999, FEBS letters.

[37]  Z. Sheng,et al.  Snapin: a SNARE–associated protein implicated in synaptic transmission , 1999, Nature Neuroscience.

[38]  T. Südhof,et al.  Membrane fusion and exocytosis. , 1999, Annual review of biochemistry.

[39]  Jens R. Coorssen,et al.  Biochemical and Functional Studies of Cortical Vesicle Fusion: The SNARE Complex and Ca2+ Sensitivity , 1998, The Journal of cell biology.

[40]  J. Skehel,et al.  Coiled Coils in Both Intracellular Vesicle and Viral Membrane Fusion , 1998, Cell.

[41]  A. Brunger,et al.  Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Scheller,et al.  Calcium Can Disrupt the SNARE Protein Complex on Sea Urchin Egg Secretory Vesicles without Irreversibly Blocking Fusion* , 1998, The Journal of Biological Chemistry.

[43]  W. Wickner,et al.  Defining the functions of trans-SNARE pairs , 1998, Nature.

[44]  A. Mayer,et al.  Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion , 1998, Nature.

[45]  J. Rothman,et al.  Arrangement of subunits in 20 S particles consisting of NSF, SNAPs, and SNARE complexes. , 1998, Molecular cell.

[46]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[47]  Josep Ubach,et al.  Three-Dimensional Structure of an Evolutionarily Conserved N-Terminal Domain of Syntaxin 1A , 1998, Cell.

[48]  W. Xiao,et al.  The synaptic SNARE complex is a parallel four-stranded helical bundle , 1998, Nature Structural Biology.

[49]  Frederick M. Hughson,et al.  Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p , 1998, Nature Structural Biology.

[50]  A. Brünger,et al.  Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP , 1998, Nature Structural Biology.

[51]  W. Weis,et al.  Crystal Structure of the Hexamerization Domain of N-ethylmaleimide–Sensitive Fusion Protein , 1998, Cell.

[52]  S. D. Carlson,et al.  Temperature-Sensitive Paralytic Mutations Demonstrate that Synaptic Exocytosis Requires SNARE Complex Assembly and Disassembly , 1998, Neuron.

[53]  A. T. Brunger,et al.  Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. , 1998, Biochemistry.

[54]  Tao Xu,et al.  Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity , 1998, Nature Neuroscience.

[55]  Nils Brose,et al.  Munc13-1 Is a Presynaptic Phorbol Ester Receptor that Enhances Neurotransmitter Release , 1998, Neuron.

[56]  M. Götte,et al.  A new beat for the SNARE drum. , 1998, Trends in cell biology.

[57]  J. C. Hao,et al.  Protease Resistance of Syntaxin·SNAP-25·VAMP Complexes , 1998, The Journal of Biological Chemistry.

[58]  Akira Mizoguchi,et al.  Tomosyn: a Syntaxin-1–Binding Protein that Forms a Novel Complex in the Neurotransmitter Release Process , 1998, Neuron.

[59]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[60]  R. Nicoll,et al.  Postsynaptic membrane fusion and long-term potentiation. , 1998, Science.

[61]  T. Südhof,et al.  RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. , 1998, Annual review of neuroscience.

[62]  R. Scheller,et al.  Structural Organization of the Synaptic Exocytosis Core Complex , 1997, Neuron.

[63]  F. Hughson Enveloped viruses: A common mode of membrane fusion? , 1997, Current Biology.

[64]  Reinhard Jahn,et al.  Structure and Conformational Changes in NSF and Its Membrane Receptor Complexes Visualized by Quick-Freeze/Deep-Etch Electron Microscopy , 1997, Cell.

[65]  B. Lentz,et al.  Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. , 1997, Biochemistry.

[66]  M. Colombo,et al.  Calmodulin Regulates Endosome Fusion* , 1997, The Journal of Biological Chemistry.

[67]  R. Scheller,et al.  Hrs-2 is an ATPase implicated in calcium-regulated secretion , 1997, Nature.

[68]  G. Matthews,et al.  Ultrafast Exocytosis Elicited by Calcium Current in Synaptic Terminals of Retinal Bipolar Neurons , 1996, Neuron.

[69]  C. Montecucco,et al.  Structural Determinants of the Specificity for Synaptic Vesicle-associated Membrane Protein/Synaptobrevin of Tetanus and Botulinum Type B and G Neurotoxins* , 1996, The Journal of Biological Chemistry.

[70]  J. R. Monck,et al.  The fusion pore and mechanisms of biological membrane fusion. , 1996, Current opinion in cell biology.

[71]  A. Mayer,et al.  Sec18p (NSF)-Driven Release of Sec17p (α-SNAP) Can Precede Docking and Fusion of Yeast Vacuoles , 1996, Cell.

[72]  Thomas C. Südhof,et al.  Complexins: Cytosolic proteins that regulate SNAP receptor function , 1995, Cell.

[73]  Andreas Prokop,et al.  Syntaxin and synaptobrevin function downstream of vesicle docking in drosophila , 1995, Neuron.

[74]  R. Burgoyne,et al.  Distinct effects of alpha-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis , 1995, The Journal of cell biology.

[75]  B. Roques,et al.  Inhibition of Neurotransmitter Release by Synthetic Proline-rich Peptides Shows That the N-terminal Domain of Vesicle-associated Membrane Protein/Synaptobrevin Is Critical for Neuro-exocytosis (*) , 1995, The Journal of Biological Chemistry.

[76]  K. Broadie,et al.  Genetic and electrophysiological studies of drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission , 1995, Cell.

[77]  J. Dolly,et al.  Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. , 1994, Biochemistry.

[78]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[79]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[80]  Jonathan Pevsner,et al.  Specificity and regulation of a synaptic vesicle docking complex , 1994, Neuron.

[81]  G. Augustine,et al.  A post-docking role for synaptobrevin in synaptic vesicle fusion , 1994, Neuron.

[82]  J. R. Monck,et al.  The exocytotic fusion pore and neurotransmitter release , 1994, Neuron.

[83]  R. Scheller,et al.  Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. , 1994, Science.

[84]  T. Südhof,et al.  Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin , 1993, Nature.

[85]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[86]  Steven S. Vogel,et al.  Mechanisms of membrane fusion. , 1993, Annual review of biophysics and biomolecular structure.

[87]  J. Hay,et al.  Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins , 1992, The Journal of cell biology.

[88]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[89]  W. Almers,et al.  Transmitter release from synapses: Does a preassembled fusion pore initiate exocytosis? , 1990, Neuron.

[90]  J. Rothman,et al.  SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast , 1990, Cell.

[91]  F E Bloom,et al.  The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations , 1989, The Journal of cell biology.

[92]  R. Scheller,et al.  Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. , 1989, The Journal of biological chemistry.

[93]  W. Balch,et al.  Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus , 1989, The Journal of cell biology.

[94]  P. De Camilli,et al.  Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. , 1989, The EMBO journal.

[95]  Benjamin S. Glick,et al.  Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack , 1988, Cell.

[96]  R. Scheller,et al.  VAMP-1: a synaptic vesicle-associated integral membrane protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[97]  W. Almers,et al.  Currents through the fusion pore that forms during exocytosis of a secretory vesicle , 1987, Nature.

[98]  R. Schekman,et al.  Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway , 1980, Cell.

[99]  J. Heuser,et al.  Arrest of membrane fusion events in mast cells by quick-freezing , 1980, The Journal of cell biology.