Endogenous Electric Fields May Guide Neocortical Network Activity

[1]  Sean M Montgomery,et al.  The Effect of Spatially Inhomogeneous Extracellular Electric Fields on Neurons , 2010, The Journal of Neuroscience.

[2]  Fernando Lopes da Silva,et al.  Comprar Niedermeyer's Electroencephalography, 6/e (Basic Principles, Clinical Applications, and Related Fields ) | Fernando Lopes Da Silva | 9780781789424 | Lippincott Williams & Wilkins , 2010 .

[3]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[4]  J. Born,et al.  Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding , 2009, Proceedings of the National Academy of Sciences.

[5]  D. McCormick,et al.  Rapid Neocortical Dynamics: Cellular and Network Mechanisms , 2009, Neuron.

[6]  M. Carandini,et al.  Local Origin of Field Potentials in Visual Cortex , 2009, Neuron.

[7]  Alexander S. Ecker,et al.  Feature Selectivity of the Gamma-Band of the Local Field Potential in Primate Primary Visual Cortex , 2008, Front. Neurosci..

[8]  Alexander Kraskov,et al.  Selectivity for Grasp in Local Field Potential and Single Neuron Activity Recorded Simultaneously from M1 and F5 in the Awake Macaque Monkey , 2008, The Journal of Neuroscience.

[9]  Yuzhuo Su,et al.  FULL-LENGTH ORIGINAL RESEARCH Effects of high-frequency stimulation on epileptiform activity in vitro: ON/OFF control paradigm , 2008 .

[10]  N F Rulkov,et al.  Effect of synaptic connectivity on long-range synchronization of fast cortical oscillations. , 2008, Journal of neurophysiology.

[11]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.

[12]  Maxim Bazhenov,et al.  Pathological Effect of Homeostatic Synaptic Scaling on Network Dynamics in Diseases of the Cortex , 2008, The Journal of Neuroscience.

[13]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[14]  B. Nolan Boosting slow oscillations during sleep potentiates memory , 2008 .

[15]  Marcello Massimini,et al.  Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. , 2007, Sleep.

[16]  Mayank R Mehta,et al.  The Upshot of Up States in the Neocortex: From Slow Oscillations to Memory Formation , 2007, The Journal of Neuroscience.

[17]  J. Deans,et al.  Sensitivity of coherent oscillations in rat hippocampus to AC electric fields , 2007, The Journal of physiology.

[18]  Yuzhuo Su,et al.  Spike Timing Amplifies the Effect of Electric Fields on Neurons: Implications for Endogenous Field Effects , 2007, The Journal of Neuroscience.

[19]  D. C. Mccarthy,et al.  Hippocampal and neocortical gamma oscillations predict memory formation in humans. , 2006, Cerebral cortex.

[20]  J. Craig Henry,et al.  Creating Coordination in the Cerebellum: Progress in Brain Research, Volume 148 , 2006, Neurology.

[21]  N. Logothetis,et al.  Local field potential reflects perceptual suppression in monkey visual cortex , 2006, Proceedings of the National Academy of Sciences.

[22]  W. Newsome,et al.  Local Field Potential in Cortical Area MT: Stimulus Tuning and Behavioral Correlations , 2006, The Journal of Neuroscience.

[23]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[24]  C. Petersen,et al.  Correlating whisker behavior with membrane potential in barrel cortex of awake mice , 2006, Nature Neuroscience.

[25]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[26]  W. Freiwald,et al.  Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. , 2005, Cerebral cortex.

[27]  S. Schiff,et al.  Control of traveling waves in the Mammalian cortex. , 2005, Physical review letters.

[28]  G. V. Simpson,et al.  Phase Locking of Single Neuron Activity to Theta Oscillations during Working Memory in Monkey Extrastriate Visual Cortex , 2003, Neuron.

[29]  Shigeyoshi Fujisawa,et al.  Chronometric readout from a memory trace: gamma‐frequency field stimulation recruits timed recurrent activity in the rat CA3 network , 2004, The Journal of physiology.

[30]  J. Jefferys,et al.  Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro , 2004, The Journal of physiology.

[31]  R. Eckhorn,et al.  Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry. , 2004, Cerebral cortex.

[32]  Christof Koch,et al.  Electrical Interactions via the Extracellular Potential Near Cell Bodies , 1999, Journal of Computational Neuroscience.

[33]  Andrea Hasenstaub,et al.  Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons , 2003, The Journal of Neuroscience.

[34]  Andrea Hasenstaub,et al.  Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. , 2003, Cerebral cortex.

[35]  S. Schiff,et al.  Sensitivity of Neurons to Weak Electric Fields , 2003, The Journal of Neuroscience.

[36]  I. Timofeev,et al.  Spontaneous field potentials influence the activity of neocortical neurons during paroxysmal activities in vivo , 2003, Neuroscience.

[37]  Steven J Schiff,et al.  In Vivo Modulation of Hippocampal Epileptiform Activity with Radial Electric Fields , 2003, Epilepsia.

[38]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. , 2003, Journal of neurophysiology.

[39]  T. Sejnowski,et al.  Model of Thalamocortical Slow-Wave Sleep Oscillations and Transitions to Activated States , 2002, The Journal of Neuroscience.

[40]  Bijan Pesaran,et al.  Temporal structure in neuronal activity during working memory in macaque parietal cortex , 2000, Nature Neuroscience.

[41]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[42]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[43]  S. Schiff,et al.  Adaptive Electric Field Control of Epileptic Seizures , 2000, The Journal of Neuroscience.

[44]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[45]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[46]  D M Durand,et al.  Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. , 2000, Journal of neurophysiology.

[47]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[48]  D. Contreras,et al.  Spatiotemporal Analysis of Local Field Potentials and Unit Discharges in Cat Cerebral Cortex during Natural Wake and Sleep States , 1999, The Journal of Neuroscience.

[49]  C. McIntyre,et al.  Excitation of central nervous system neurons by nonuniform electric fields. , 1999, Biophysical journal.

[50]  R. Astumian,et al.  Theoretical limits on the threshold for the response of long cells to weak extremely low frequency electric fields due to ionic and molecular flux rectification. , 1998, Biophysical journal.

[51]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[52]  F. Rattay,et al.  Analysis of the electrical excitation of CNS neurons , 1998, IEEE Transactions on Biomedical Engineering.

[53]  G. Svirskis,et al.  Electrotonic measurements by electric field-induced polarization in neurons: theory and experimental estimation. , 1997, Biophysical journal.

[54]  E J Vigmond,et al.  Mechanisms of electrical coupling between pyramidal cells. , 1997, Journal of neurophysiology.

[55]  A. Peters,et al.  The organization of pyramidal cells in area 18 of the rhesus monkey. , 1997, Cerebral cortex.

[56]  Ditto,et al.  Stochastic Resonance in a Neuronal Network from Mammalian Brain. , 1996, Physical review letters.

[57]  M. Steriade,et al.  Intracortical and corticothalamic coherency of fast spontaneous oscillations. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A. Peters,et al.  Myelinated axons and the pyramidal cell modules in monkey primary visual cortex , 1996, The Journal of comparative neurology.

[59]  J. Jefferys,et al.  Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. , 1995, Physiological reviews.

[60]  M Steriade,et al.  Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[63]  H Korn,et al.  Electrical field effects: their relevance in central neural networks. , 1989, Physiological reviews.

[64]  C. Nicholson,et al.  Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. , 1988, The Journal of physiology.

[65]  C. Nicholson,et al.  A model for the polarization of neurons by extrinsically applied electric fields. , 1986, Biophysical journal.

[66]  F. Rattay Analysis of Models for External Stimulation of Axons , 1986, IEEE Transactions on Biomedical Engineering.

[67]  C. Nicholson,et al.  Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. , 1986, The Journal of physiology.

[68]  F. Dudek,et al.  Role of electrical interactions in synchronization of epileptiform bursts. , 1986, Advances in neurology.

[69]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[70]  F. Edward Dudek,et al.  Electrical fields directly contribute to action potential synchronization during convulsant-induced epileptiform bursts , 1984, Brain Research.

[71]  H. Haas,et al.  Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission , 1982, Nature.

[72]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[73]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[74]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[75]  C. Nicholson,et al.  Theoretical analysis of field potentials in anisotropic ensembles of neuronal elements. , 1973, IEEE transactions on bio-medical engineering.