Photorealistic Image Rendering with Population Monte Carlo Energy Redistribution

This work presents a novel global illumination algorithm which concentrates computation on important light transport paths and automatically adjusts energy distributed area for each light transport path. We adapt statistical framework of Population Monte Carlo into global illumination to improve rendering efficiency. Information collected in previous iterations is used to guide subsequent iterations by adapting the kernel function to approximate the target distribution without introducing bias into the final result. Based on this framework, our algorithm automatically adapts the amount of energy redistribution at different pixels and the area over which energy is redistributed. Our results show that the efficiency can be improved by exploring the correlated information among light transport paths.

[1]  Wolfgang Heidrich,et al.  Sequential Sampling for Dynamic Environment Map Illumination , 2022 .

[2]  Werner Purgathofer,et al.  On The Start-Up Bias Problem Of Metropolis Sampling , 1999 .

[3]  O. Cappé,et al.  Population Monte Carlo , 2004 .

[4]  Paul S. Heckbert Adaptive radiosity textures for bidirectional ray tracing , 1990, SIGGRAPH.

[5]  Jean-Michel Marin,et al.  Convergence of Adaptive Sampling Schemes , 2004 .

[6]  Csaba Kelemen,et al.  Simple and Robust Mutation Strategy for Metropolis Light Transport Algorithm , 2001 .

[7]  Justin Talbot,et al.  Energy redistribution path tracing , 2005, ACM Trans. Graph..

[8]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[9]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[10]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[11]  Peter Shirley,et al.  A variance analysis of the Metropolis Light Transport algorithm , 2001, Comput. Graph..

[12]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[13]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[14]  Gregory J. Ward,et al.  A ray tracing solution for diffuse interreflection , 2008, SIGGRAPH '08.

[15]  R. Douc,et al.  Minimum variance importance sampling via Population Monte Carlo , 2007 .

[16]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[17]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[18]  Yu-Chi Lai,et al.  Metropolis photon sampling with optional user guidance , 2005, EGSR '05.

[19]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[20]  Parris K. Egbert,et al.  Energy redistribution path tracing , 2005, SIGGRAPH 2005.

[21]  Alexander Keller,et al.  Metropolis Light Transport for Participating Media , 2000, Rendering Techniques.