Modeling and verifying circuits using generalized relative timing

We propose a novel technique for modeling and verifying timed circuits based on the notion of generalized relative timing. Generalized relative timing constraints can express not just a relative ordering between events, but also some forms of metric timing constraints. Circuits modeled using generalized relative timing constraints are formally encoded as timed automata. Novel fully symbolic verification algorithms for timed automata are then used to either verify a temporal logic property or to check conformance against an untimed specification. The combination of our new modeling technique with fully symbolic verification methods enables us to verify larger circuits than has been possible with other approaches. We present case studies to demonstrate our approach, including a self-timed circuit used in the integer unit of the Intel/sup /spl reg// Pentium/sup /spl reg//4 processor.

[1]  Robin Milner,et al.  An Algebraic Definition of Simulation Between Programs , 1971, IJCAI.

[2]  C. Ramchandani,et al.  Analysis of asynchronous concurrent systems by timed petri nets , 1974 .

[3]  Thomas A. Henzinger,et al.  Logics and Models of Real Time: A Survey , 1991, REX Workshop.

[4]  Alain J. Martin Synthesis of Asynchronous VLSI Circuits , 1991 .

[5]  Thomas A. Henzinger,et al.  Temporal proof methodologies for real-time systems , 1991, POPL '91.

[6]  E. Clarke,et al.  Symbolic Model Checking : IO * ’ States and Beyond * , 1992 .

[7]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[8]  Steven M. Nowick,et al.  Automatic synthesis of burst-mode asynchronous controllers , 1993 .

[9]  Mark Russell Greenstreet,et al.  Stari: a technique for high-bandwidth communication , 1993 .

[10]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[11]  Thomas A. Henzinger,et al.  Symbolic Model Checking for Real-Time Systems , 1994, Inf. Comput..

[12]  Kenneth S. Stevens,et al.  Practical verification and synthesis of low latency asynchronous systems , 1994 .

[13]  Amir Pnueli,et al.  Timing analysis of asynchronous circuits using timed automata , 1995, CHARME.

[14]  Chris J. Myers,et al.  Computer-aided synthesis and verification of gate-level timed circuits , 1996 .

[15]  Robert K. Brayton,et al.  Verifying Abstractions of Timed Systems , 1996, CONCUR.

[16]  Radu Negulescu A Technique for Finding and Verifying Speed-Dependences in Gate Circuits , 1997 .

[17]  Ad M. G. Peeters,et al.  Verification of speed-dependences in single-rail handshake circuits , 1998, Proceedings Fourth International Symposium on Advanced Research in Asynchronous Circuits and Systems.

[18]  Chris J. Myers,et al.  Algorithms for synthesis and verification of timed circuits and systems , 1999 .

[19]  Ran Ginosar,et al.  Relative timing , 1999, Proceedings. Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems.

[20]  Tomohiro Yoneda,et al.  Timed trace theoretic verification using partial order reduction , 1999, Proceedings. Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems.

[21]  Jordi Cortadella,et al.  Formal verification of safety properties in timed circuits , 2000, Proceedings Sixth International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC 2000) (Cat. No. PR00586).

[22]  Stephan Merz,et al.  Model Checking , 2000 .

[23]  Ivan E. Sutherland,et al.  GasP: a minimal FIFO control , 2001, Proceedings Seventh International Symposium on Asynchronous Circuits and Systems. ASYNC 2001.

[24]  S. Samaan,et al.  A 0.18 /spl mu/m CMOS IA32 microprocessor with a 4 GHz integer execution unit , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[25]  Ran Ginosar,et al.  An asynchronous instruction length decoder , 2001, IEEE J. Solid State Circuits.

[26]  David J. Sager,et al.  A 0 . 18-m CMOS IA-32 Processor With a 4-GHz Integer Execution Unit , 2001 .

[27]  Peter A. Beerel,et al.  Relative timing based verification of timed circuits and systems , 2002, Proceedings Eighth International Symposium on Asynchronous Circuits and Systems.

[28]  Alain J. Martin,et al.  Asynchronous Pulse Logic , 2002 .

[29]  Kenneth L. McMillan,et al.  Applying SAT Methods in Unbounded Symbolic Model Checking , 2002, CAV.

[30]  K.S. Stevens,et al.  Relative timing [asynchronous design] , 2003, IEEE Trans. Very Large Scale Integr. Syst..

[31]  Peter A. Beerel,et al.  CORRECTNESS AND REDUCTION IN TIMED CIRCUIT ANALYSIS , 2003 .

[32]  Sanjit A. Seshia,et al.  Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods , 2003, CAV.

[33]  Seth Copen Goldstein,et al.  C to Asynchronous Dataflow Circuits: An End-to-End Toolflow , 2004 .

[34]  Jordi Cortadella,et al.  Verification of timed circuits with symbolic delays , 2004, ASP-DAC 2004: Asia and South Pacific Design Automation Conference 2004 (IEEE Cat. No.04EX753).

[35]  Chris J. Myers,et al.  Verification of timed circuits with failure-directed abstractions , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.