Electrothermal CAD of power devices and circuits with fully physical time-dependent compact thermal modeling of complex nonlinear 3-d systems

An original, fully analytical, spectral domain decomposition approach is presented for the time-dependent thermal modeling of complex nonlinear (3-D) electronic systems, from metallized power FETs and MMICs, through MCMs, up to circuit board level. This solution method offers a powerful alternative to conventional numerical thermal simulation techniques, and is constructed to be compatible with explicitly coupled electrothermal device and circuit simulation on CAD timescales. In contrast to semianalytical, frequency space, Fourier solutions involving DFT-FFT, the method presented here is based on explicit, fully analytical, double Fourier series expressions for thermal subsystem solutions in Laplace transform s-space (complex frequency space). It is presented in the form of analytically exact thermal impedance matrix expressions for thermal subsystems. These include double Fourier series solutions for rectangular multilayers, which are an order of magnitude faster to evaluate than existing semi-analytical Fourier solutions based on DFT-FFT. They also include double Fourier series solutions for the case of arbitrarily distributed volume heat sources and sinks, constructed without the use of Green's function techniques, and for rectangular volumes with prescribed fluxes on all faces, removing the adiabatic sidewall boundary condition. This combination allows treatment of arbitrarily inhomogeneous complex geometries, and provides a description of thermal material nonlinearities as well as inclusion of position varying and non linear surface fluxes. It provides a fully physical, and near exact, generalized multiport network parameter description of nonlinear, distributed thermal subsystems, in both the time and frequency domains. In contrast to existing circuit level approaches, it requires no explicit lumped element, RC-network approximation or nodal reduction, for fully coupled, electrothermal CAD. This thermal impedance matrix approach immediately gives rise to minimal boundary condition independent compact models for thermal systems. Implementation of the time-dependent thermal model as N-port netlist elements within a microwave circuit simulation engine, Transim (NCSU), is described. Electrothermal transient, single-tone, two-tone, and multitone harmonic balance simulations are presented for a MESFET amplifier. This thermal model is validated experimentally by thermal imaging of a passive grid array representative of one form of spatial power combining architecture.

[1]  A. J. Panks,et al.  Electrothermal modeling and measurement for spatial power combining at millimeter wavelengths , 1999 .

[2]  David J. Allstot,et al.  Electrothermal simulation of integrated circuits , 1993 .

[3]  A. I. Khalil,et al.  Global modeling of spatially distributed microwave and millimeter-wave systems , 1999 .

[4]  P. Leturcq,et al.  Three-dimensional thermal modeling based on the two-port network theory for hybrid or monolithic integrated power circuits , 1996 .

[5]  Fabrizio Bonani,et al.  On the application of the Kirchhoff transformation to the steady-state thermal analysis of semiconductor devices with temperature-dependent and piecewise inhomogeneous thermal conductivity , 1995 .

[6]  J. L. Ebel,et al.  Thermal effects on the characteristics of AlGaAs/GaAs heterojunction bipolar transistors using two-dimensional numerical simulation , 1993 .

[7]  V. Szekely,et al.  Identification of RC networks by deconvolution: chances and limits , 1998 .

[8]  M. Rencz,et al.  An alternative method for electro-thermal circuit simulation , 1999, 1999 Southwest Symposium on Mixed-Signal Design (Cat. No.99EX286).

[9]  T. A. A. Broadbent,et al.  Survey of Applicable Mathematics , 1970, Mathematical Gazette.

[10]  K. C. Gupta,et al.  Emerging trends in millimeter-wave CAD , 1998 .

[11]  Vladimir Szekely Accurate calculation of device heat dynamics: a special feature of the TRANS-TRAN circuit-analysis program , 1973 .

[12]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[13]  W. D. Day Tables of Laplace Transforms , 1966 .

[14]  Jia Tzer Hsu,et al.  A rational formulation of thermal circuit models for electrothermal simulation. II. Model reduction techniques [power electronic systems] , 1996 .

[15]  P. Webb Thermal design of gallium arsenide MESFETs for microwave power amplifiers , 1997 .

[16]  Christopher M. Snowden,et al.  Predictive microwave device design by coupled electro-thermal simulation based on a fully physical thermal model , 2000, 8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications (Cat. No.00TH8534).

[17]  S. Lindenkreuz,et al.  Fully coupled dynamic electro-thermal simulation , 1997, IEEE Trans. Very Large Scale Integr. Syst..

[18]  Robert Fox,et al.  A physics-based, dynamic thermal impedance model for SOI MOSFET's , 1997 .

[19]  P. W. Webb,et al.  Thermal simulation of transients in microwave devices , 1991 .

[20]  Carlos Christoffersen,et al.  Global Modeling of Nonlinear Microwave Circuits , 2000 .

[21]  C.E. Christoffersen,et al.  Global electrothermal CAD of complex nonlinear 3-D systems based on a fully physical time-dependent compact thermal model , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[22]  Song-Ping Zhu,et al.  An application of the LTDRM to transient diffusion problems with nonlinear material properties and nonlinear boundary conditions , 1997 .

[23]  C. Snowden,et al.  Electro-thermal device and circuit simulation with thermal nonlinearity due to temperature dependent diffusivity , 2000 .

[24]  M. B. Steer,et al.  Steady-State and Transient ElectroThermal Simulation of Power Devices and Circuits Based on a Fully Physical Thermal Model , 2000 .

[25]  Andreas Rieder,et al.  Wavelets: Theory and Applications , 1997 .

[26]  M.-N. Sabry,et al.  A lumped transient thermal model for self-heating in MOSFETs , 2001 .

[27]  C. Snowden,et al.  A physics-based electro-thermal model for microwave and millimetre wave HEMTs , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[28]  A. J. Panks,et al.  Thermal transients in microwave active devices and their influence on intermodulation distortion , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[29]  Marco Pirola,et al.  Large-scale, computer-aided thermal design of power GaAs integrated devices and circuits , 1994, Proceedings of 1994 IEEE GaAs IC Symposium.

[30]  V. Székely,et al.  THERMODEL: a tool for compact dynamic thermal model generation , 1998 .

[31]  A. J. Panks,et al.  Electro-thermal modelling and measurement of thermal time constants and natural convection in spatial power combining grid arrays , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[32]  P. Webb Thermal modeling of power gallium arsenide microwave integrated circuits , 1993 .

[33]  Carlos Christoffersen,et al.  An integrated environment for the simulation of electrical, thermal and electromagnetic interactions in high-performance integrated circuits , 1999, IEEE 8th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No.99TH8412).

[34]  Harry F. Cooke,et al.  Precise technique finds FET thermal resistance , 1986 .

[35]  A. J. Panks,et al.  Fully physical coupled electro-thermal simulations and measurements of power FETs , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[36]  A. Haji-sheikh,et al.  Heat Conduction Using Green's Function , 1992 .

[37]  Donald C. Price,et al.  Adaptive Modeling of the Transients of Submicron Integrated Circuits , 1998 .

[38]  H. Fukui,et al.  Thermal resistance of GaAs field-effect transistors , 1980, 1980 International Electron Devices Meeting.

[39]  Christopher M. Snowden,et al.  Electro-thermal Modelling of Monolithic and Hybrid Microwave and Millimeter Wave IC's , 2000, VLSI Design.

[40]  Michel S. Nakhla,et al.  Mixed frequency/time domain analysis of nonlinear circuits , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[41]  M. Maeda,et al.  [Heat conduction]. , 1972, Kango kyoshitsu. [Nursing classroom].

[42]  A. G. Kokkas Thermal analysis of multiple-layer structures , 1974 .

[43]  W. B. Joyce,et al.  Thermal resistance of heat sinks with temperature-dependent conductivity , 1975 .

[44]  J. Vlach,et al.  Computation of time domain response by numerical inversion of the Laplace transform , 1975 .

[45]  Peter Schwarz,et al.  Electro-thermal circuit simulation using simulator coupling , 1997, IEEE Trans. Very Large Scale Integr. Syst..

[46]  F. Sarvar,et al.  PCB glass-fibre laminates: Thermal conductivity measurements and their effect on simulation , 1991 .

[47]  Marta Rencz,et al.  An efficient thermal simulation tool for ICs, microsystem elements and MCMs: the μS-THERMANAL , 1998 .

[48]  Carlos Christoffersen,et al.  Implementation of the local reference node concept for spatially distributed circuits , 1999 .

[49]  M. N. Sabry An integral method for studying the onset of natural convection , 1993 .

[50]  Roger D. Pollard,et al.  A large-signal physical HEMT model , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[51]  C.J.M. Lasance Two benchmarks to facilitate the study of compact thermal modeling phenomena , 2001 .

[52]  C.E. Christoffersen,et al.  State-variable-based transient circuit simulation using wavelets , 2001, IEEE Microwave and Wireless Components Letters.

[53]  Gordon N. Ellison Thermal analysis of microelectric packages and printed circuit boards using an analytic solution to the heat conduction equation , 1995 .

[54]  StehfestHarald Remark on algorithm 368: Numerical inversion of Laplace transforms , 1970 .

[55]  Jia Tzer Hsu,et al.  A Rational Formulation of Thermal Circuit Models for Electrothermal Simulation- Part 11: Model Reduction Techniques , 1996, ISCAS 2009.

[56]  P. W. Webb,et al.  Thermal resistance of gallium-arsenide field-effect transistors , 1989 .

[57]  Marco Pirola,et al.  A large-scale, self-consistent thermal simulator for the layout optimization of power III-V field-effect and bipolar transistors , 1994 .

[58]  Alessandra Costanzo,et al.  Three-dimensional computation of the thermal parameters of multiple-gate power FETs , 1993, 1993 23rd European Microwave Conference.

[59]  L. Rosenhead Conduction of Heat in Solids , 1947, Nature.

[60]  M.-N. Sabry,et al.  Static and dynamic thermal modeling of ICs , 1999 .

[61]  Rogério Martins Saldanha da Gama A linear scheme for simulating conduction heat transfer problems with nonlinear boundary conditions , 1997 .

[62]  L. Damkilde,et al.  Comments on 'Electro-thermal device and circuit simulation with thermal nonlinearity due to temperature dependent diffusivity' , 2001 .

[63]  A. J. Panks,et al.  Electro-thermal modelling of microwave transistors and MMICs for optimised transient and steady-state performance , 2000, 8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications (Cat. No.00TH8534).

[64]  L. Codecasa,et al.  A new approach to model self-heating of electric circuits through thermal networks , 1999 .

[65]  E. S. Schlig,et al.  Thermal properties of very fast transistors , 1970 .

[66]  V. Szekely,et al.  Simulation, testing and modeling of the thermal behavior and electro-thermal interactions in ICs, MCMs and PWBs , 1999, 1999 Southwest Symposium on Mixed-Signal Design (Cat. No.99EX286).

[67]  Marco Pirola,et al.  Thermal CAD for power III-V devices and MMICs , 1995, Proceedings of 1995 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference.

[68]  A. Hefner,et al.  Thermal component models for electro-thermal network simulations , 1993 .

[69]  Michael B. Steer,et al.  Fully physical time-dependent compact thermal modelling of complex non linear 3-dimensional systems for device and circuit level electro-thermal CAD , 2001, Seventeenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.01CH37189).

[70]  V. Székely,et al.  Accurate algorithm for temperature calculation of devices in nonlinear-circuit-analysis programs , 1972 .

[71]  Robert Anholt,et al.  Electrical and thermal characterization of MESFETs, HEMTs, and HBTs , 1994 .

[72]  Carlos Christoffersen,et al.  Object oriented microwave circuit simulation , 2000 .

[73]  Mark J. W. Rodwell,et al.  State-variable-based transient analysis using convolution , 1999 .

[74]  Jia Tzer Hsu,et al.  A rational formulation of thermal circuit models for electrothermal simulation-Part I: Finite element method , 1996 .

[75]  Christopher M. Snowden,et al.  Large-signal microwave characterization of AlGaAs/GaAs HBT's based on a physics-based electrothermal model , 1997 .

[76]  A. J. Panks,et al.  Fully coupled electro-thermal simulation of MMICs and MMIC arrays based on a physical model , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[77]  P. Stehouwer,et al.  Creation and evaluation of compact models for thermal characterisation using dedicated optimisation software , 1999, Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.99CH36306).

[78]  Christopher M. Snowden,et al.  Quasi-two-dimensional MESFET simulations for CAD , 1989 .

[79]  Márta Rencz,et al.  Electro-thermal and logi-thermal simulation of VLSI designs , 1997, IEEE Trans. Very Large Scale Integr. Syst..

[80]  H. Heinrich,et al.  F. Oberhettinger / L. Badii, Tables of Laplace Transforms. VII. + 428 S. Berlin/Heidelberg/New York 1973. Springer‐Verlag. Preis brosch, DM 39,— , 1975 .

[81]  C. Snowden,et al.  Reply to Comment on 'Electro-thermal device and circuit simulation with thermal nonlinearity due to temperature dependent diffusivity' , 2001 .

[82]  M. Rencz,et al.  Algorithmic extension of thermal field solvers: time constant analysis , 2000, Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.00CH37068).

[83]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[84]  James S. Wilson,et al.  Transient Adaptive Thermal Simulation of Microwave Integrated Circuits , 1998, Fourteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.98CH36195).

[85]  Marta Rencz,et al.  SUNRED: a new field solving approach , 1999, Design, Test, Integration, and Packaging of MEMS/MOEMS.

[86]  Carlos Alberto Brebbia,et al.  The dual reciprocity boundary element formulation for diffusion problems , 1987 .

[87]  C. Snowden,et al.  An investigation of breakdown in power HEMTs and MESFETs utilising an advanced temperature-dependent physical model , 1998, Compound Semiconductors 1997. Proceedings of the IEEE Twenty-Fourth International Symposium on Compound Semiconductors.

[88]  Jia Tzer Hsu,et al.  A rational formulation of thermal circuit models for electrothermal simulation. I. Finite element method [power electronic systems] , 1996 .

[89]  C.E. Christoffersen,et al.  Harmonic balance analysis for systems with circuit-field iterations , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).