Hedging with options in models with jumps

We consider the problem of hedging a contingent claim, in a market where prices of traded assets can undergo jumps, by trading in the underlying asset and a set of traded options. We give a general expression for the hedging strategy which minimizes the variance of the hedging error, in terms of integral representations of the options involved. This formula is then applied to compute hedge ratios for common options in various models with jumps, leading to easily computable expressions. The performance of these hedging strategies is assessed through numerical experiments.

[1]  Robert J. Elliott,et al.  Orthogonal Martingale Representation , 1991 .

[2]  N. Shephard,et al.  Modelling by Lévy Processess for Financial Econometrics , 2001 .

[3]  Rama Cont,et al.  A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..

[4]  R. Cont,et al.  Non-parametric calibration of jump–diffusion option pricing models , 2004 .

[5]  Philip Protter,et al.  Complete markets with discontinuous security price , 1999, Finance Stochastics.

[6]  D. Heath,et al.  Option Pricing, Interest Rates and Risk Management: Numerical Comparison of Local Risk-Minimisation and Mean-Variance Hedging , 2001 .

[7]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[8]  Rama Cont,et al.  A FINITE DIFFERENCE SCHEME FOR OPTION PRICING IN JUMP DIFFUSION AND EXPONENTIAL L , 2005 .

[9]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[10]  Rama Cont,et al.  Integro-differential equations for option prices in exponential Lévy models , 2005, Finance Stochastics.

[11]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[12]  Damien Lamberton,et al.  Residual risks and hedging strategies in Markovian markets , 1989 .

[13]  P. Protter,et al.  Explicit form and robustness of martingale representations , 2000 .

[14]  Alain Bensoussan,et al.  Impulse Control and Quasi-Variational Inequalities , 1984 .

[15]  Friedrich Hubalek,et al.  Variance-Optimal Hedging for Processes with Stationary Independent Increments , 2006, math/0607112.

[16]  Takuji Arai,et al.  An extension of mean-variance hedging to the discontinuous case , 2005, Finance Stochastics.

[17]  A. Lo,et al.  Nonparametric Risk Management and Implied Risk Aversion , 2000 .

[18]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[19]  D. Sondermann Hedging of non-redundant contingent claims , 1985 .

[20]  Denis Belomestny,et al.  Spectral calibration of exponential Lévy models , 2006, Finance Stochastics.

[21]  M. Schweizer A guided tour through quadratic hedging approaches , 1999 .

[22]  H. Föllmer,et al.  Hedging of contingent claims under incomplete in-formation , 1991 .

[23]  Rama Cont,et al.  Retrieving Lévy Processes from Option Prices: Regularization of an Ill-posed Inverse Problem , 2006, SIAM J. Control. Optim..

[24]  Frank Proske,et al.  Explicit Representation of the Minimal Variance Portfolio in Markets Driven by Lévy Processes , 2003 .