Solid-state gas sensors for high temperature applications – a review

The development of high temperature gas sensors for industrial applications such as combustion processes is essential to improve energy efficiency and reduce toxic emissions. However, gas sensors operating at high temperatures up to 1000 °C typically encounter many challenging issues, such as thermal and long-term stability, sensitivity, reproducibility and selectivity. This feature article discusses a variety of solid-state gas sensors that can be operated at high temperatures above 600 °C. The basic working principles for each type of solid-state gas sensor are briefly introduced, including potentiometric, amperometric, resistive and impedancemetric sensors. The key results and discussions of previous studies on high temperature O2, CO, HCs and NOx sensors are also presented with emphasis on the development of suitable electrolytes and sensing materials with good thermal stability and sensing performance for such high temperature gas sensing applications. Finally, the challenges and scope for future development are discussed.

[1]  Gunter Hagen,et al.  Thick-film impedance based hydrocarbon detection based on chromium(III) oxide/ zeolite interfaces , 2006 .

[2]  V. Thangadurai,et al.  Ce0.8Sm0.2O1.9: characterization of electronic charge carriers and application in limiting current oxygen sensors , 2004 .

[3]  T. Ishihara,et al.  Amperometric NOX sensor based on oxygen pumping current by using LaGaO3-based solid electrolyte for monitoring exhaust gas , 2005 .

[4]  Maria Luisa Grilli,et al.  Non-Nernstian planar sensors based on YSZ with a Nb2O5 electrode , 2008 .

[5]  Norio Miura,et al.  HIGH-TEMPERATURE POTENTIOMETRIC/AMPEROMETRIC NOX SENSORS COMBINING STABILIZED ZIRCONIA WITH MIXED-METAL OXIDE ELECTRODE , 1998 .

[6]  C. Pijolat,et al.  Oxygen and carbon monoxide role on the electrical response of a non-Nernstian potentiometric gas sensor; proposition of a model , 2004 .

[7]  N. Yamazoe,et al.  Stabilized zirconia-based NOx sensor operative at high temperature , 1995 .

[8]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .

[9]  Taro Ueda,et al.  Zirconia-based amperometric sensor using La-Sr-based perovskite-type oxide sensing electrode for detection of NO2 , 2009 .

[10]  Giacomo Cao,et al.  Resistive λ-sensors based on ball milled Fe-doped SrTiO3 nanopowders obtained by self-propagating high-temperature synthesis (SHS) , 2007 .

[11]  E. Shimada,et al.  Intrinsic and Extrinsic Oxygen Diffusion and Surface Exchange Reaction in Cerium Oxide , 2000 .

[12]  Ichiro Matsubara,et al.  Small temperature-dependent resistive oxygen gas sensors using Ce0.9Y0.1O2−δ as a new temperature compensating material , 2004 .

[13]  H.-J. Beie,et al.  Oxygen gas sensors based on CeO2 thick and thin films , 1991 .

[14]  Mogens Bjerg Mogensen,et al.  Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes , 2012 .

[15]  Ralf Moos,et al.  Cuprate-ferrate compositions for temperature independent resistive oxygen sensors , 2006 .

[16]  J. Labrincha,et al.  Evaluation of SrTi1âyNbyO3+δ materials for gas sensors , 1999 .

[17]  Ralf Moos,et al.  Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control , 2000 .

[18]  Norio Miura,et al.  Improvement of NO2 a Sensing Performances by an Additional Second Component to the Nano‐Structured NiO Sensing Electrode of a YSZ‐Based Mixed‐Potential‐Type Sensor , 2006 .

[19]  Yuehuan Li,et al.  A novel impedancemetric NO2 sensor based on nano-structured La0.75Sr0.25Cr0.5Mn0.5O3−δ prepared by impregnating method , 2013 .

[20]  R. Glass,et al.  Effect of Electrode Material and Design on Sensitivity and Selectivity for High Temperature Impedancemetric NO x Sensors , 2009 .

[21]  Jing Wang,et al.  Novel Zn–M–O (M = Sn, Co) sensing electrodes for selective mixed potential CO/C3H8 sensors , 2013 .

[22]  Robert F. Novak,et al.  Diesel engine dynamometer testing of impedancemetric NOx sensors , 2010 .

[23]  Prabir K. Dutta,et al.  Study of the resistance behavior of anatase and rutile thick films towards carbon monoxide and oxygen at high temperatures and possibilities for sensing applications , 2009 .

[24]  Prabir K. Dutta,et al.  High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference , 2007 .

[25]  Maria Luisa Grilli,et al.  Planar electrochemical sensors based on tape-cast YSZ layers and oxide electrodes , 2004 .

[26]  W. Göpel,et al.  Trends in the development of solid state amperometric and potentiometric high temperature sensors , 2000 .

[27]  U. Guth,et al.  Electrochemical investigations on multi-metallic electrodes for amperometric NO gas sensors , 2005 .

[28]  Liaoying Zheng,et al.  TiO2−x thin films as oxygen sensor , 2000 .

[29]  R. Moos,et al.  BaFe1-xTaxO3-δ – A material for temperature independent resistive oxygen sensors , 2014 .

[30]  Joachim Frank,et al.  Gas-sensitive electrical properties of pure and doped semiconducting Ga2O3 thick films , 1998 .

[31]  U. Lampe,et al.  Carbon-monoxide sensors based on thin films of BaSnO3 , 1995 .

[32]  T. Ishihara,et al.  Sensitive Amperometric NO Sensor Using LaGaO3-Based Oxide Ion Conducting Electrolyte , 2005 .

[33]  Prabir K. Dutta,et al.  Oxidation chemistry and electrical activity of Pt on titania: development of a novel zeolite-filter hydrocarbon sensor , 2004 .

[34]  G. Martinelli,et al.  Gas-sensing applications of W–Ti–O-based nanosized thin films prepared by r.f. reactive sputtering , 1997 .

[35]  Rangachary Mukundan,et al.  Solid-state mixed potential gas sensors: theory, experiments and challenges , 2000 .

[36]  A. Cirera,et al.  Estimation of the electrodes’ three phase boundary sites in electrochemical exhaust gas sensors before and after electric polarization , 2012 .

[37]  Ramachandran Kumar,et al.  Potentiometric SO2 gas sensor based on a thick film of Ca2+ ion conducting solid electrolyte , 2006 .

[38]  Jens Zosel,et al.  Au–oxide composites as HC-sensitive electrode material for mixed potential gas sensors , 2002 .

[39]  Mohieddine Benammar,et al.  Techniques for measurement of oxygen and air-to-fuel ratio using zirconia sensors. A review , 1994 .

[40]  Yuehuan Li,et al.  High temperature amperometric NO2 sensor based on nano-structured Gd0.2Sr0.8FeO3−δ prepared by impregnating method , 2014 .

[41]  G. Lu,et al.  Mixed-potential-type zirconia-based NO2 sensor with high-performance three-phase boundary , 2011 .

[42]  Masahiro Utiyama,et al.  Impedancemetric zirconia-based sensor attached with laminated-oxide sensing-electrode aiming at highly sensitive and selective detection of propene in atmospheric air , 2010 .

[43]  Werner Weppner,et al.  Solid-state electrochemical gas sensors☆ , 1987 .

[44]  W. Marsden I and J , 2012 .

[45]  Gunter Hagen,et al.  Selective impedance based gas sensors for hydrocarbons using ZSM-5 zeolite films with chromium(III)oxide interface , 2006 .

[46]  Robert S. Glass,et al.  Impedancemetric NO x Sensing Using YSZ Electrolyte and YSZ ∕ Cr2O3 Composite Electrodes , 2007 .

[47]  Nianqiang Wu,et al.  Impedance-metric Pt/YSZ/Au–Ga2O3 sensor for CO detection at high temperature , 2005 .

[48]  Sheikh A. Akbar,et al.  Ceramic electrolytes and electrochemical sensors , 2003 .

[49]  R. Mukundan,et al.  Mixed potential NOx sensors using thin film electrodes and electrolytes for stationary reciprocating engine type applications , 2006 .

[50]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[51]  Prabir K. Dutta,et al.  Oxygen sensors: Materials, methods, designs and applications , 2003 .

[52]  Zhang Mei,et al.  Oxygen sensitivity of nano-CeO2 coating TiO2 materials , 2003 .

[53]  M. Rȩkas,et al.  Solid-state potentiometric gas sensors—current status and future trends , 2009 .

[54]  Robert F. Novak,et al.  Effect of Electrode Composition and Microstructure on Impedancemetric Nitric Oxide Sensors Based on YSZ Electrolyte , 2007 .

[55]  K. Shimizu,et al.  Impedancemetric gas sensor based on Pt and WO3 co-loaded TiO2 and ZrO2 as total NOx sensing materials , 2008 .

[56]  Girish M. Kale,et al.  Influence of sensing electrode and electrolyte on performance of potentiometric mixed-potential gas sensors , 2007 .

[57]  R. Glass,et al.  Investigating the Stability and Accuracy of the Phase Response for NOx Sensing 5% Mg-modified LaCrO3 , 2007 .

[58]  B. Saruhan,et al.  Planar, impedance-metric NOx-sensor with spinel-type SE for high temperature applications , 2007 .

[59]  H. Meixner,et al.  Fast gas sensors based on metal oxides which are stable at high temperatures , 1997 .

[60]  Johann Riegel,et al.  Exhaust gas sensors for automotive emission control , 2002 .

[61]  Neil Genzlinger A. and Q , 2006 .

[62]  Toshio Itoh,et al.  Resistive Oxygen Sensor Using Ceria-Zirconia Sensor Material and Ceria-Yttria Temperature Compensating Material for Lean-Burn Engine , 2009, Sensors.

[63]  Ichiro Matsubara,et al.  Temperature independent resistive oxygen sensors using solid electrolyte zirconia as a new temperature compensating material , 2005 .

[64]  Albert P. Pisano,et al.  A review of recent progress in sensing of gas concentration by impedance change , 2011 .

[65]  Yu Lei,et al.  La0.67Sr0.33MnO3 nanofibers for in situ, real-time, and stable high temperature oxygen sensing , 2012 .

[66]  Norio Miura,et al.  Mixed-potential-type propylene sensor based on stabilized zirconia and oxide electrode , 2000 .

[67]  G. L. Sharma,et al.  Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor , 1997 .

[68]  Jacobus H. Visser,et al.  Development of ceramic mixed potential sensors for automotive application , 2002 .

[69]  Ellen Ivers-Tiffée,et al.  High temperature oxygen sensors based on doped SrTiO3 , 1999 .

[70]  L. Wang,et al.  Solid-state sensors for in-line monitoring of NO2 in automobile exhaust emission , 2003 .

[71]  Norio Miura,et al.  Mixed potential type sensor using stabilized zirconia and ZnFe2O4 sensing electrode for NOx detection at high temperature , 2002 .

[72]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[73]  Prabir K. Dutta,et al.  High temperature amperometric total NOx sensors with platinum-loaded zeolite Y electrodes , 2007 .

[74]  E. Logothetis,et al.  Chemical and physical sensors based on oxygen pumping with solid-state electrochemical cells , 1992 .

[75]  Norio Miura,et al.  Mixed-potential-type NOx sensor based on YSZ and zinc oxide sensing electrode , 2004 .

[76]  Kai-Hsin Chang,et al.  Temperature independent resistive oxygen sensor prepared using zirconia-doped ceria powders , 2012 .

[77]  N. Miura,et al.  Tunable NO2-Sensing Characteristics of YSZ-Based Mixed-Potential-Type Sensor Using Ni1 − x Co x O -Sensing Electrode , 2009 .

[78]  Hisao Suzuki,et al.  β‐Gallium Oxide as Oxygen Gas Sensors at a High Temperature , 2007 .

[79]  Dae-Sik Lee,et al.  Environmental gas sensors , 2001 .

[80]  Ling Wang,et al.  A novel carbon dioxide gas sensor based on solid bielectrolyte , 2003 .

[81]  Norio Miura,et al.  High-temperature NOx sensors using zirconia solid electrolyte and zinc-family oxide sensing electrode , 2002 .

[82]  H. Meixner,et al.  Surface modifications of Ga2O3 thin film sensors with Rh, Ru and Ir clusters , 2000 .

[83]  H. Kaneko,et al.  Characterization of zirconia oxygen sensors with a molten internal reference for low-temperature operation , 2003 .

[84]  Jian Wang,et al.  NO x Sensing Characteristics of Mixed-Potential-Type Zirconia Sensor Using NiO Sensing Electrode at High Temperatures , 2005 .

[85]  Norio Miura,et al.  Impedance-based total-NOx sensor using stabilized zirconia and ZnCr2O4 sensing electrode operating at high temperature , 2002 .

[86]  Jeffrey W. Fergus,et al.  Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases , 2007 .

[87]  N. Miura,et al.  Electrochemical NOx sensors based on stabilized zirconia: comparison of sensing performances of mixed-potential-type and impedancemetric NOx sensors , 2006 .

[88]  G. Martinelli,et al.  Preparation and micro-structural characterization of nanosized thin film of TiO2WO3 as a novel material with high sensitivity towards NO2 , 1996 .

[89]  N. Miura,et al.  Impedancemetric sensor based on YSZ and In2O3 for detection of low concentrations of water vapor at high temperature , 2004 .

[90]  Xiaojing Wang,et al.  A high performance limiting current oxygen sensor with Ce0.8Sm0.2O1.9 electrolyte and La0.8Sr0.2Co0.8Fe0.2O3 diffusion barrier , 2013 .

[91]  T. Ishihara,et al.  An Amperometric Solid State NO Sensor Using a LaGaO3 Electrolyte for Monitoring Exhaust Gas , 2006 .

[92]  O. Toft Sørensen,et al.  Oxygen sensors based on semiconducting metal oxides: an overview , 2000 .

[93]  Jeffrey W. Fergus,et al.  Sensing mechanism of non-equilibrium solid-electrolyte-based chemical sensors , 2010 .

[94]  G. Lu,et al.  Mixed-potential type NOx sensor using stabilized zirconia and Cr2O3-WO3 nanocomposites , 2013, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[95]  N. Miura,et al.  Novel solid-state manganese oxide-based reference electrode for YSZ-based oxygen sensors , 2011 .

[96]  D. Westphal,et al.  Gold-composite electrodes for hydrocarbon sensors based on YSZ solid electrolyte , 2001 .

[97]  Prabir K. Dutta,et al.  Composite n–p semiconducting titanium oxides as gas sensors , 2001 .

[98]  E. Traversa,et al.  Study of YSZ-Based Electrochemical Sensors with WO 3 Electrodes in NO 2 and CO Environments , 2003 .

[99]  Norio Miura,et al.  Potentiometric NOx sensor based on stabilized zirconia and NiCr2O4 sensing electrode operating at high temperatures , 2001 .

[100]  Ralf Moos,et al.  Temperature-independent resistive oxygen exhaust gas sensor for lean-burn engines in thick-film technology , 2003 .

[101]  R. Glass,et al.  Impedance Characterization of a Model Au ∕ Yttria -Stabilized Zirconia ∕ Au Electrochemical Cell in Varying Oxygen and NO x Concentrations , 2006 .

[102]  Sheikh A. Akbar,et al.  Ceramics for chemical sensing , 2003 .

[103]  Yu Lei,et al.  Pt-CeO2 nanofibers based high-frequency impedancemetric gas sensor for selective CO and C3H8 detection in high-temperature harsh environment , 2013 .

[104]  Sébastien Candel,et al.  Combustion control and sensors: a review , 2002 .

[105]  D. R. Brown,et al.  CERIA-ELECTROLYTE-BASED MIXED POTENTIAL SENSORS FOR THE DETECTION OF HYDROCARBONS AND CARBON MONOXIDE , 1999 .

[106]  E. Bartolomeo,et al.  YSZ-based electrochemical sensors: From materials preparation to testing in the exhausts of an engine bench test , 2005 .

[107]  M. Sahimi,et al.  Oxygen sensor with solid-state CeO2–ZrO2–TiO2 reference , 2005 .

[108]  E. Traversa,et al.  Propene Detection at High Temperatures Using Highly Sensitive Non-Nernstian Electrochemical Sensors Based on Nb and Ta Oxides , 2010 .

[109]  Jens Zosel,et al.  Response behavior of perovskites and Au/oxide composites as HC-electrodes in different combustibles , 2004 .

[110]  Norio Miura,et al.  Stabilized zirconia-based sensors using WO3 electrode for detection of NO or NO2 , 2000 .

[111]  W. L. Worrell,et al.  A new sulphur dioxide sensor using a novel two-phase solid-sulphate electrolyte , 1984 .

[112]  Harry L. Tuller,et al.  Gas sensors: New materials and processing approaches , 2006 .

[113]  Eric L. Brosha,et al.  A mixed-potential sensor based on a Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} electrolyte and platinum and gold electrodes , 2000 .

[114]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[115]  Prabir K. Dutta,et al.  High‐Temperature Ceramic Gas Sensors: A Review , 2006 .

[116]  Paolo Fornasiero,et al.  Automotive catalytic converters: current status and some perspectives , 2003 .

[117]  Norio Miura,et al.  Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century : What are the prospects for sensors? , 2007 .

[118]  N. Miura,et al.  Highly sensitive and selective stabilized zirconia-based mixed-potential-type propene sensor using NiO/Au composite sensing-electrode , 2010 .

[119]  Prabir K. Dutta,et al.  Promoting selectivity and sensitivity for a high temperature YSZ-based electrochemical total NOx sensor by using a Pt-loaded zeolite Y filter , 2007 .

[120]  M. Sahimi,et al.  A novel miniaturized oxygen sensor with solid-state ceria–zirconia reference , 2004 .

[121]  M. Sahimi,et al.  An yttria-doped ceria-based oxygen sensor with solid-state reference , 2004 .

[122]  Maximilian Fleischer,et al.  Advances in application potential of adsorptive-type solid state gas sensors: high-temperature semiconducting oxides and ambient temperature GasFET devices , 2008 .

[123]  T. Inaba,et al.  Characteristics of an HC sensor using a Pr6O11 electrode , 2005 .

[124]  Noriya Izu,et al.  Resistive oxygen gas sensors based on CeO2 fine powder prepared using mist pyrolysis , 2002 .

[125]  Tim Schwebel,et al.  A selective, temperature compensated O2 sensor based on Ga2O3 thin films , 2000 .

[126]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[127]  Daisuke Terada,et al.  Mixed-potential-type zirconia-based NOx sensor using Rh-loaded NiO sensing electrode operating at high temperatures , 2006 .

[128]  N. Miura,et al.  Sensing characteristics of mixed-potential-type zirconia-based sensor using laminated-oxide sensing electrode , 2008 .

[129]  Ellen Ivers-Tiffée,et al.  Temperature-independent resistive oxygen sensors based on SrTi1−xFexO3−δ solid solutions , 2005 .

[130]  S. Cordiner,et al.  Non-Nernstian Electrochemical Sensors with a Nb2O5 Sensing Electrode for Engine Exhaust Monitoring , 2009 .

[131]  C. Ren,et al.  A new automotive air/fuel sensor based on TiO2-doped Nb2O5 thin film by ion-beam-enhanced deposition , 1996 .

[132]  Jens Zosel,et al.  Selectivity of HC-sensitive electrode materials for mixed potential gas sensors , 2004 .

[133]  N. Miura,et al.  Sensing Characteristics of YSZ-Based Mixed-Potential-Type Planar NO x Sensors Using NiO Sensing Electrodes Sintered at Different Temperatures , 2005 .

[134]  Norio Miura,et al.  Detection of combustible hydrogen-containing gases by using impedancemetric zirconia-based water-vapor sensor , 2005 .

[135]  D. R. Brown,et al.  Mixed potential sensors using lanthanum manganate and terbium yttrium zirconium oxide electrodes , 2002 .

[136]  T. Ueda,et al.  Effect of Sr addition to La-based perovskite-type oxide as an electrode material for zirconia-based amperometric-type NOx sensor , 2012, Ionics.

[137]  Ichiro Matsubara,et al.  Resistive oxygen gas sensors based on Ce1−xZrxO2 nano powder prepared using new precipitation method , 2005 .

[138]  Maoqing Li,et al.  An investigation of response time of TiO2 thin-film oxygen sensors , 1996 .

[139]  Fengmin Liu,et al.  Highly sensitive mixed-potential-type NO2 sensor using porous double-layer YSZ substrate , 2013 .

[140]  Yu Ding,et al.  CeO2 nanofibers for in situ O2 and CO sensing in harsh environments , 2012 .

[141]  N. Miura,et al.  NO2 sensing properties of YSZ-based sensor using NiO and Cr-doped NiO sensing electrodes at high temperature , 2009 .

[142]  Hiroyuki Kaneko,et al.  Performance of a miniature zirconia oxygen sensor with a Pd–PdO internal reference , 2005 .

[143]  Ralf Moos,et al.  Poisoning of Temperature Independent Resistive Oxygen Sensors by Sulfur Dioxide , 2004 .

[144]  Ichiro Matsubara,et al.  On the platinum sensitization of nanosized cerium dioxide oxygen sensors , 2003 .

[145]  Ralf Moos,et al.  A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics , 2005 .

[146]  N. Miura,et al.  Temperature dependence of NO2 sensitivity of YSZ-based mixed potential type sensor attached with NiO sensing electrode , 2013, Ionics.

[147]  Yuehuan Li,et al.  A planar, impedancemetric NO2 sensor based on NiO nanoparticles sensing electrode , 2012 .

[148]  Masahiro Utiyama,et al.  Highly sensitive impedance-based propene sensor using stabilized zirconia and zinc oxide sensing-electrode , 2007 .

[149]  F. Millot,et al.  A new method for the study of chemical diffusion in oxides with application to cerium oxide CeO2−x , 1985 .

[150]  E. Traversa,et al.  High temperature detection of CO/HCs gases by non-Nernstian planar sensors using Nb2O5 electrode , 2008 .

[151]  Norio Miura,et al.  Performances of planar NO2 sensor using stabilized zirconia and NiO sensing electrode at high temperature , 2005 .

[152]  David Eskilsson,et al.  Optimisation of efficiency and emissions in pellet burners , 2004 .

[153]  Norio Miura,et al.  NO2 sensing performances of planar sensor using stabilized zirconia and thin-NiO sensing electrode , 2008 .

[154]  Norio Miura,et al.  Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature , 2003 .

[155]  G. Kale Solid-state mixed-potential sensor employing tin-doped indium oxide sensing electrode and scandium oxide-stabilised zirconia electrolyte , 2009 .

[156]  Joachim Frank,et al.  High temperature Ga2O3-gas sensors and SnO2-gas sensors: a comparison , 2001 .

[157]  Prabir K. Dutta,et al.  Titanium dioxide based high temperature carbon monoxide selective sensor , 2001 .

[158]  H. Meixner,et al.  Electrical doping of gassensitive, semiconducting Ga2O3 thin films , 1996 .

[159]  Norio Miura,et al.  Selective detection of NO by using an amperometric sensor based on stabilized zirconia and oxide electrode , 1999 .

[160]  J. Fergus Perovskite oxides for semiconductor-based gas sensors , 2007 .

[161]  Sheikh A. Akbar,et al.  A Rugged Oxygen Gas Sensor with Solid Reference for High Temperature Applications , 2001 .

[162]  H. Meixner,et al.  THIN-FILM GAS SENSORS BASED ON HIGH-TEMPERATURE-OPERATED METAL OXIDES , 1999 .

[163]  S. Colominas,et al.  Evaluation of potentiometric oxygen sensors based on stabilized zirconia for molten 44.5% lead–55.5% bismuth alloy , 2010 .

[164]  Giacomo Cao,et al.  FeSrTiO3-based resistive oxygen sensors for application in diesel engines , 2008 .

[165]  Norio Miura,et al.  Development of NOx sensing devices based on YSZ and oxide electrode aiming for monitoring car exhausts , 2004 .

[166]  S. Colominas,et al.  Characterisation of an oxygen sensor based on In/In , 2004 .

[167]  Girish M. Kale,et al.  Influence of thickness of ITO sensing electrode film on sensing performance of planar mixed potential CO sensor , 2006 .

[168]  N. Miura,et al.  Improving NO2 Sensitivity by Adding WO3 during Processing of NiO Sensing-Electrode of Mixed-Potential-Type Zirconia-Based Sensor , 2007 .

[169]  H. Fritze,et al.  Solid State Sensors for Selective Gas Detection at High Temperatures—Principles and Challenges , 2010 .

[170]  A. Pisano,et al.  Investigation of an impedancemetric NOx sensor with gold wire working electrodes , 2012, Journal of Solid State Electrochemistry.

[171]  M. Gauthier,et al.  Solid‐State Detectors for the Potentiometric Determination of Gaseous Oxides I . Measurement in Air , 1977 .

[172]  Claus-Dieter Kohl,et al.  CO-SENSOR FOR DOMESTIC USE BASED ON HIGH TEMPERATURE STABLE GA2O3 THIN FILMS , 1998 .

[173]  J. Stetter,et al.  Amperometric gas sensors--a review. , 2008, Chemical reviews.

[174]  Jian Wang,et al.  High-temperature operating characteristics of mixed-potential-type NO2 sensor based on stabilized-zirconia tube and NiO sensing electrode , 2006 .

[175]  E. Traversa,et al.  Non‐Nernstian Planar Sensors Based on YSZ with Ta (10 at.%)‐Doped Nanosized Titania as a Sensing Electrode for High‐Temperature Applications , 2006 .

[176]  Norio Miura,et al.  Solid-state electrochemical gas sensors , 2009 .

[177]  G. Kiss,et al.  Effect of gas adsorption on the surface structure of β-Ga2O3 studied by XPS and conductivity measurements , 1998 .

[178]  Ralf Moos,et al.  Response kinetics of temperature-independent resistive oxygen sensor formulations: a comparative study , 2006 .

[179]  J. Zosel,et al.  Electrochemical solid electrolyte gas sensors — hydrocarbon and NOx analysis in exhaust gases , 2004 .

[180]  Prabir K. Dutta,et al.  Interaction of Carbon Monoxide with Anatase Surfaces at High Temperatures: Optimization of a Carbon Monoxide Sensor , 1999 .

[181]  J. Giber,et al.  Auger and SIMS study of segregation and corrosion behaviour of some semiconducting oxide gas-sensor materials , 1994 .

[182]  D. R. Brown,et al.  CO/HC sensors based on thin films of LaCoO3 and La0.8Sr0.2CoO3−δ metal oxides , 2000 .