Effect of particle size distribution on recovery of coarse chalcopyrite and galena in Denver flotation cell

Abstract The flotation recovery by particle size of single mineral chalcopyrite and galena was studied in a Denver flotation cell, using sodium dicresylthiophosphate (DTP) and sodium isopropyl xanthate (SIPX) as collectors and polypropylene glycol (PPG) as a frother. The study was extended to very coarse particle size (up to 1·6 mm). Froth stability was also measured in parallel to the batch flotation tests, in a specifically designed froth stability column, following the Bikerman approach. It is shown that particles up to 850 μm can be floated successfully, provided they are liberated and hydrophobic. However, the recovery of both chalcopyrite and galena was strongly influenced by the overall particle size distribution, decreasing sharply as the fraction of fines (−106 μm) in the feed also decreased. Rheology measurements showed negligible differences in pulp viscosity, and therefore in the collection zone hydrodynamics, between the different conditions tested. Froth stability, on the contrary, decreased as the feed particle size distribution became coarser. Correlation was found between the amount of fines in the pulp, froth stability and flotation recovery. The recovery of mineral particles is critically dependent on froth stability, which in turn is highly influenced by the overall particle size distribution of the feed material. For these reasons, the study also suggests that it is not possible in batch flotation to determine the rate and recovery of the coarse particle size fractions floating them independently from the fine size fractions. Dans une cellule de flottation de Denver, on a étudié la récupération par flottation en fonction de la taille de particule d’un minéral unique de chalcopyrite ou de galène, en utilisant du dicrésyle thiophosphate de sodium (DTP) et de l’isopropyle xanthate de sodium (SIPX) comme agents collecteurs et du polypropylène glycol (PPG) comme agent moussant. On a étendu l’étude à la taille de particule très grossière (jusqu’à 1·6 mm). On a également mesuré la stabilité de la mousse en parallèle aux essais de flottation discontinue, dans une colonne de stabilité de la mousse spécialement conçue, d’après l’approche de Bikerman. On montre que l’on peut faire flotter avec succès des particules ayant jusqu’à 850 μm, à la condition qu’elles soient libres et hydrophobes. Cependant, la récupération, tant de la chalcopyrite que de la galène, était fortement influencée par la distribution globale de la taille de particule, diminuant sévèrement à mesure que la fraction de particules fines (−106 μm) dans l’alimentation diminuait. Les mesures de rhéologie montraient des différences négligeables dans la viscosité de la pulpe et ainsi dans l’hydrodynamique de la zone de collection, parmi les différentes conditions évaluées. Au contraire, la stabilité de la mousse diminuait à mesure que la distribution de la taille de particule de l’alimentation devenait plus grossière. On a trouvé une corrélation entre la quantité de particules fines dans la pulpe, la stabilité de la mousse et la récupération par flottation. La récupération des particules minérales dépend, de façon critique, de la stabilité de la mousse qui, à son tour est hautement influencée par la distribution globale de la taille de particule du matériel d’alimentation. Pour ces raisons, l’étude suggère également qu’il n’est pas possible, en flottation discontinue, de déterminer la vitesse et la récupération des fractions de taille de particules grossières, en les faisant flotter indépendamment des fractions de taille fine.

[1]  Graeme J. Jameson,et al.  The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp , 2012 .

[2]  W. Skinner,et al.  ToF-SIMS-derived hydrophobicity in DTP flotation of chalcopyrite: Contact angle distributions in flotation streams , 2011 .

[3]  Graeme J. Jameson,et al.  New directions in flotation machine design , 2010 .

[4]  R. Pérez-Garibay,et al.  Bubbles coalescence: Hydrofobic particles effect , 2010 .

[5]  W. Bruckard,et al.  The effect of particle shape and hydrophobicity in flotation , 2009 .

[6]  W. Bruckard,et al.  A review of factors that affect contact angle and implications for flotation practice. , 2009, Advances in colloid and interface science.

[7]  J-P. Franzidis,et al.  Quantifying contributions to froth stability in porphyry copper plants , 2009 .

[8]  D. Fornasiero,et al.  The Limits of Fine and Coarse Particle Flotation , 2008 .

[9]  Anthony Banford,et al.  Dynamic froth stability: Particle size, airflow rate and conditioning time effects , 2008 .

[10]  Ugur Ulusoy,et al.  Influence of shape characteristics of talc mineral on the column flotation behavior , 2006 .

[11]  R. Pugh Experimental techniques for studying the structure of foams and froths. , 2005, Advances in colloid and interface science.

[12]  S. Grano,et al.  Effect of particle hydrophobicity on particle and water transport across a flotation froth , 2005 .

[13]  M. J. Pearse,et al.  An overview of the use of chemical reagents in mineral processing , 2005 .

[14]  Jan J. Cilliers,et al.  Dynamic froth stability in froth flotation , 2003 .

[15]  D. Fornasiero,et al.  Bubble particle heterocoagulation under turbulent conditions. , 2003, Journal of colloid and interface science.

[16]  Gerald H. Luttrell,et al.  A parametric study of froth stability and its effect on column flotation of fine particles , 2000 .

[17]  Chris Aldrich,et al.  Effect of particle size on flotation performance of complex sulphide ores , 1999 .

[18]  Ralston,et al.  Contact Angle Studies of Ethyl Xanthate Coated Galena Particles , 1996, Journal of colloid and interface science.

[19]  C. Prestidge,et al.  Rheological investigations of sulphide mineral slurries , 1995 .

[20]  Jean-Louis Salager,et al.  A new method to estimate the stability of short-life foams☆ , 1995 .

[21]  D. Fornasiero,et al.  Effects of Particle Size and Density, and Turbulence on Flotation Recovery , 2009 .

[22]  J. Giurini Are We Up to the Challenge , 2008 .

[23]  J. M. Toguri,et al.  Aluminum Foam Stabilization by Solid Particles , 1999 .

[24]  R. Pugh,et al.  The influence of particle size and hydrophobicity on the stability of mineralized froths , 1992 .

[25]  A. Dippenaar,et al.  The destabilization of froth by solids. II. The rate-determining step , 1982 .

[26]  A. Dippenaar,et al.  The destabilization of froth by solids. I. The mechanism of film rupture , 1982 .

[27]  J. Bikerman Measurement of Foaminess , 1973 .