Potentiality of benthic dinoflagellate cultures and screening of their bioactivities in Jeju Island, Korea

Eleven strains of benthic dinoflagellates ( Amphidinium carterae (D1), Prorocentrum rhathymum (D2), S ymbiodinium sp. (D3), Coolia malayensis 1 (D4), Ostreopsis ovata 1 (D5), Ostreopsis ovata 2 (D6), Coolia malayensis 2 (D7), Amphidinium operculatum 1 (D8), Heterocapsa psammophila (D9), Coolia malayensis 3 (D10) and Amphidinium operculatum 2 (D11)) were collected in Jeju Island, Korea and cultured in 20 L carboys after establishing unialgal cultures. Their growth potential and biomass productivity were evaluated using two different culture media (IMK and f/2 medium); it was found that IMK medium has the potential to culture benthic dinoflagellates compared to commonly used f/2 medium. Among the benthic dinoflagellates, A. carterae (D1) had the maximum cell density (148.6 × 103 cells mL-1), growth rate (0.317 ± 0.01 divisions day-1) and biomass (0.260 ± 0.03 g L-1 dry weight) in IMK medium at 20 days of culture. Also, screened bioactivities among the methanolic extracts of cultured dinoflagellates showed A. carterae (D1) to have the highest antioxidant and  anti-inflammatory effect and O. ovata 1 (D5) had the highest anticancer activity compared to the other strains. Taken together, this is the first report on the growth potential and biomass production of benthic dinoflagellate strains isolated from Jeju Island in appropriate culture medium as well as their importance in potential pharmacological applications. Key words : Amphidinium carterae, benthic dinoflagellates, biomass, bioactivities, culture conditions, Jeju Island.

[1]  Lee Joon-Baek,et al.  Presence of benthic dinoflagellates around coastal waters of Jeju Island including newly recorded species , 2013 .

[2]  S. S. Rath,et al.  Maximizing biomass productivity and CO2 biofixation of microalga, Scenedesmus sp. by using sodium hydroxide. , 2013, Journal of microbiology and biotechnology.

[3]  Shinya Sato,et al.  Effects of temperature, salinity and their interaction on growth of toxic Ostreopsis sp. 1 and Ostreopsis sp. 6 (Dinophyceae) isolated from Japanese coastal waters , 2013, Fisheries Science.

[4]  H. Jeong,et al.  Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium , 2012, Proceedings of the National Academy of Sciences.

[5]  Shinya Sato,et al.  Culture method and growth characteristics of marine benthic dinoflagellate Ostreopsis spp. isolated from Japanese coastal waters , 2012, Fisheries Science.

[6]  S. Fraga,et al.  Review of the Main Ecological Features Affecting Benthic Dinoflagellate Blooms , 2012 .

[7]  J. Camp,et al.  Biomass and Lipid Production of Dinoflagellates and Raphidophytes in Indoor and Outdoor Photobioreactors , 2012, Marine Biotechnology.

[8]  E. Granéli,et al.  Influence of temperature on growth, toxicity and carbohydrate production of a Japanese Ostreopsis ovata strain, a toxic-bloom-forming dinoflagellate , 2012 .

[9]  V. Dixit,et al.  Signaling in innate immunity and inflammation. , 2012, Cold Spring Harbor perspectives in biology.

[10]  S. Fraga,et al.  Gambierdiscus and Ostreopsis: Reassessment of the state of knowledge of their taxonomy, geography, ecophysiology, and toxicology , 2012 .

[11]  P. Holland,et al.  Optimization of growth and production of toxins by three dinoflagellates in photobioreactor cultures , 2011, Journal of Applied Phycology.

[12]  Z. Amzil,et al.  Alexandrium ostenfeldii growth and spirolide production in batch culture and photobioreactor , 2011 .

[13]  C. Trees,et al.  Macronutrient uptake and carotenoid/chlorophyll a ratio in the dinoflagellate Amphidinium carteri Hulburt, cultured under different nutrient and light conditions , 2011 .

[14]  C. Dell’Aversano,et al.  A review on the effects of environmental conditions on growth and toxin production of Ostreopsis ovata. , 2011, Toxicon : official journal of the International Society on Toxinology.

[15]  E. Molina Grima,et al.  Culture of dinoflagellates in a fed-batch and continuous stirred-tank photobioreactors: Growth, oxidative stress and toxin production , 2010 .

[16]  C. Dell’Aversano,et al.  Comparative growth and toxin profile of cultured Ostreopsis ovata from the Tyrrhenian and Adriatic Seas. , 2010, Toxicon : official journal of the International Society on Toxinology.

[17]  F. Cerino,et al.  Ostreopsis ovata bloom along the Conero Riviera (northern Adriatic Sea): relationships with environmental conditions and substrata. , 2010 .

[18]  J. M. Fernández-Sevilla,et al.  Biotechnological production of lutein and its applications , 2010, Applied Microbiology and Biotechnology.

[19]  E. Ibáñez,et al.  Recent trends in the advanced analysis of bioactive fatty acids. , 2010, Journal of pharmaceutical and biomedical analysis.

[20]  K. Omasa,et al.  Effects of temperature, photosynthetic photon flux density, photoperiod and O2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, Amphidinium sp. , 2008, Journal of Applied Phycology.

[21]  M. Hoppenrath,et al.  Dinoflagellate diversity and distribution , 2008, Biodiversity and Conservation.

[22]  F. Ascencio,et al.  Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus. , 2007, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[23]  J. Lee,et al.  The anti-inflammatory effects of Pyrolae herba extract through the inhibition of the expression of inducible nitric oxide synthase (iNOS) and NO production. , 2007, Journal of ethnopharmacology.

[24]  M. Hoppenrath,et al.  Seasonal changes of benthic and epiphytic dinoflagellates in the Veracruz reef zone, Gulf of Mexico , 2007 .

[25]  Y. Chisti,et al.  Biotechnological significance of toxic marine dinoflagellates. , 2007, Biotechnology advances.

[26]  M. Dragunow,et al.  Investigations into the cellular actions of the shellfish toxin gymnodimine and analogues. , 2005, Environmental toxicology and pharmacology.

[27]  Naoki Ohishi,et al.  Symbioimine and neosymbioimine, amphoteric iminium metabolites from the symbiotic marine dinoflagellate Symbiodinium sp. , 2005, Bioorganic & medicinal chemistry.

[28]  Y. Oba,et al.  Zooxanthellamide Cs: vasoconstrictive polyhydroxylated macrolides with the largest lactone ring size from a marine dinoflagellate of Symbiodinium sp. , 2005, Journal of the American Chemical Society.

[29]  Louis A. Codispoti,et al.  The Role of Eutrophication in the Global Proliferation of Harmful Algal Blooms , 2005 .

[30]  Yang Song,et al.  A new unsaturated glycoglycerolipid from a cultured marine dinoflagellate Amphidinium carterae. , 2005, Chemical & pharmaceutical bulletin.

[31]  L. Rhodes,et al.  The structures of five new antifungal and hemolytic amphidinol analogs from Amphidinium carterae collected in New Zealand , 2005 .

[32]  Jeffrey S Dason,et al.  Inhibition of growth in two dinoflagellates by rapid changes in external pH , 2004 .

[33]  L. Mydlarz,et al.  Pseudopterosin biosynthesis in Symbiodinium sp., the dinoflagellate symbiont of Pseudopterogorgia elisabethae. , 2003, Chemistry & biology.

[34]  Yusuf Chisti,et al.  Producing drugs from marine sponges. , 2003, Biotechnology advances.

[35]  Y. Oba,et al.  Zooxanthellamide A, a novel polyhydroxy metabolite from a marine dinoflagellate of Symbiodinium sp. , 2003 .

[36]  M. Tsuda,et al.  Bioactive macrolides and polyketides from marine dinoflagellates , 2003 .

[37]  I. Karunasagar,et al.  PCR detection of dinoflagellate cysts in field sediment samples from tropic and temperate environments , 2002 .

[38]  M. A. Faust,et al.  IOC TAXONOMIC REFERENCE LIST OF TOXIC PLANKTON ALGAE , 2002 .

[39]  E. Garcés,et al.  Potentially toxic epiphytic dinoflagellate assemblages on macroalgae in the NW Mediterranean , 2001 .

[40]  C. Hearn,et al.  Nutrient dynamics in the Biosphere 2 coral reef mesocosm: water velocity controls NH4 and PO4 uptake , 2001, Coral Reefs.

[41]  A. Daranas,et al.  Toxic marine microalgae. , 2001, Toxicon : official journal of the International Society on Toxinology.

[42]  R. Lewis,et al.  Ciguatera: recent advances but the risk remains. , 2000, International journal of food microbiology.

[43]  S. Ghosh,et al.  Transcriptional Activation of the Cyclooxygenase-2 Gene in Endotoxin-treated RAW 264.7 Macrophages* , 2000, The Journal of Biological Chemistry.

[44]  T. Shiba,et al.  Screening of epiphytic dinoflagellates for radical scavenging and cytotoxic activities , 1998 .

[45]  Yuan-Kun Lee,et al.  Determination of biomass dry weight of marine microalgae , 1997, Journal of Applied Phycology.

[46]  L. Rhodes,et al.  Coolia monotis (Dinophyceae): A toxic epiphytic microalgal species found in New Zealand (Note) , 1997 .

[47]  E. Tang WHY DO DINOFLAGELLATES HAVE LOWER GROWTH RATES? 1 , 1996 .

[48]  R. Lewis,et al.  Cooliatoxin, the first toxin from Coolia monotis (Dinophyceae). , 1995, Natural toxins.

[49]  G. K. Paul,et al.  Isolation and chemical structure of amphidinol 2, a potent hemolytic compound from marine dinoflagellate Amphidinium klebsii , 1995 .

[50]  Y. Kan,et al.  Palytoxin analogs from the dinoflagellate Ostreopsis siamensis. , 1995 .

[51]  G. Hallegraeff A review of harmful algal blooms and their apparent global increase , 1993 .

[52]  S. Morton,et al.  Effect of temperature, salinity and light intensity on the growth and seasonality of toxic dinoflagellates associated with ciguatera , 1992 .

[53]  P. Thompson,et al.  INFLUENCE OF IRRADIANCE ON THE FATTY ACID COMPOSITION OF PHYTOPLANKTON 1 , 1990 .

[54]  D. Tindall,et al.  Culture and toxicity of dinoflagellates from ciguatera endemic regions of the world , 1989 .

[55]  D. Ballantine,et al.  Associated bacterial flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus , 1989, Applied and environmental microbiology.

[56]  G. Dixon,et al.  The growth of dinoflagellates in laboratory cultures , 1988 .

[57]  T. Yasumoto,et al.  TOXINS PRODUCED BY BENTHIC DINOFLAGELLATES , 1987 .

[58]  L. Fritz,et al.  A RAPID SIMPLE TECHNIQUE UTILIZING CALCOFLUOR WHITE M2R FOR THE VISUALIZATION OF DINOFLAGELLATE THECAL PLATES 1 , 1985 .

[59]  P. H. Thomas,et al.  The invariance of macromolecular composition with altered light limited growth rate of Amphidinium carteri (dinophyceae) , 1985, Archives of Microbiology.

[60]  健児 安元,et al.  渦鞭毛藻Prorocentrum limaの毒の主成分PL toxin-IIの単離と同定 , 1982 .

[61]  J. Stein Handbook of Phycological methods - Culture methods and Growth measurements , 1973 .

[62]  S. Morris,et al.  Growth and toxin profile of Ostreopsis cf. ovata (Dinophyta) from Rio de Janeiro, Brazil , 2012 .

[63]  E. Funari,et al.  Can increases in temperature stimulate blooms of the toxic benthic dinoflagellate Ostreopsis ovata , 2011 .

[64]  L. A. Zimmerman Environmental regulation of toxin production : comparison of hemolytic activity of Amphidinium carterae and Amphidinium klebsii , 2009 .

[65]  A. R. Loeblich,et al.  Chloroplast pigments of the marine dinoflagellateGyrodinium resplendens , 2006, Lipids.

[66]  D. Faulkner,et al.  Marine natural products. , 2000, Natural product reports.

[67]  Donald M. Anderson,et al.  Physiological ecology of harmful algal blooms , 1998 .

[68]  F. Nanjo,et al.  Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. , 1996, Free radical biology & medicine.

[69]  D. J. Faulkner Marine natural products. , 1996, Natural product reports.

[70]  T. Yasumoto,et al.  Toxicity of benthic dinoflagellates found in coral reef-II. Toxicity of benthic dinoflagellates in Okinawa. , 1981 .

[71]  S. J. Pirt,et al.  Principles of microbe and cell cultivation , 1975 .