Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires

AbstractWe describe the use of individual zinc oxide (ZnO) micro/nanowires in an electrochemical biosensor for uric acid. The wires were synthesized by chemical vapor deposition and possess uniform morphology and high crystallinity as revealed by scanning electron microscopy, X-ray diffraction, and photoluminescence studies. The enzyme uricase was then immobilized on the surface of the ZnO micro/nanowires by physical adsorption, and this was proven by Raman spectroscopy and fluorescence microscopy. The resulting uric acid biosensor undergoes fast electron transfer between the active site of the enzyme and the surface of the electrode. It displays high sensitivity (89.74 μA cm−2 mM−1) and a wide linear analytical range (between 0.1 mM and 0.59 mM concentrations of uric acid). This study also demonstrates the potential of the use of individual ZnO micro/nanowires for the construction of highly sensitive nano-sized biosensors. FigureIndividual ZnO micro/nanowire based electrochemical biosensor was constructed. The biosensor displayed a higher sensitivity of 89.74 μA cm−2 mM−1 for uric acid detection.

[1]  H. Karimi-Maleh,et al.  Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N'-phenyl-hydrazinecarbothioamide. , 2008, Analytical chemistry.

[2]  Zhengdong Sun,et al.  Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor , 2004 .

[3]  Shana O Kelley,et al.  Amplified electrocatalysis at DNA-modified nanowires. , 2005, Nano letters.

[4]  S. Erramilli,et al.  Silicon-based nanochannel glucose sensor , 2008, 0802.1721.

[5]  Malcolm L. H. Green,et al.  Bioelectrochemical single-walled carbon nanotubes. , 2002, Journal of the American Chemical Society.

[6]  B. Keskinler,et al.  An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. , 2008, Talanta.

[7]  Martin M. F. Choi,et al.  Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane. , 2007, Biosensors & bioelectronics.

[8]  John C. Roberts,et al.  Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN∕GaN high electron mobility transistors , 2007 .

[9]  Chun-Sing Lee,et al.  Silicon nanowires as chemical sensors , 2003 .

[10]  B. Tell,et al.  Raman Effect in Zinc Oxide , 1966 .

[11]  Y. Tsai,et al.  Poly(vinyl alcohol)-assisted dispersion of multiwalled carbon nanotubes in aqueous solution for electroanalysis , 2006 .

[12]  Funan Chen,et al.  Chemiluminescence biosensor chip based on a microreactor using carrier air flow for determination of uric acid in human serum. , 2002, The Analyst.

[13]  Gengfeng Zheng,et al.  Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays , 2006, Science.

[14]  Anthony Turner,et al.  Development of an On-line Glucose Sensor for Fermentation Monitoring , 1987 .

[15]  Katerina Tsagaraki,et al.  Carbon nanofiber-based glucose biosensor. , 2006, Analytical chemistry.

[16]  M. Dresselhaus,et al.  Chirality-dependent transport in double-walled carbon nanotube assemblies: the role of inner tubes. , 2011, ACS nano.

[17]  Che-Wei Hsu,et al.  A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood , 2005 .

[18]  V. Gayathri,et al.  Carbon nanotube as NEMS sensor - effect of chirality and stone-wales defect intend , 2006 .

[19]  C. R. Raj,et al.  Mercaptoethylpyrazine promoted electrochemistry of redox protein and amperometric biosensing of uric acid. , 2007, Biosensors & bioelectronics.

[20]  Yu Song,et al.  ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange , 2010 .

[21]  Sang Yeol Lee,et al.  ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode , 2010 .

[22]  T. Ataka,et al.  Quantitative Detection of Protein Using a Top-gate Carbon Nanotube Field Effect Transistor , 2007 .

[23]  J. Anzai,et al.  Amperometric uric acid sensors based on polyelectrolyte multilayer films. , 2003, Talanta.

[24]  Xiaoping Wang,et al.  An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes , 2009 .

[25]  X. W. Sun,et al.  Zinc oxide nanocomb biosensor for glucose detection , 2006 .

[26]  H. Tsai,et al.  Simultaneous determination of renal clinical analytes in serum using hydrolase- and oxidase-encapsulated optical array biosensors. , 2004, Analytical biochemistry.

[27]  J. Zhao,et al.  Raman spectra and photoluminescence properties of In-doped ZnO nanostructures , 2010 .

[28]  Dapeng Yu,et al.  Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach , 2001 .

[29]  J. Kan,et al.  Polyaniline-uricase biosensor prepared with template process. , 2004, Biosensors & bioelectronics.

[30]  R. Pemberton,et al.  Development of a sandwich format, amperometric screen-printed uric acid biosensor for urine analysis. , 2012, Analytical biochemistry.

[31]  Lun Wang,et al.  Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites , 2010 .

[32]  Liping Guo,et al.  Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid-modified electrode. , 2008, Biosensors & bioelectronics.

[33]  M. Mascini,et al.  Determination of anticholinesterase pesticides in real samples using a disposable biosensor , 1997 .

[34]  Li Zhang,et al.  A highly sensitive nonenzymatic glucose sensor based on CuO nanowires , 2012, Microchimica Acta.

[35]  Charles M Lieber,et al.  Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Y. Xian,et al.  ZnS quantum dots derived a reagentless uric acid biosensor. , 2006, Talanta.

[37]  M. Hernández-Vélez,et al.  Nanowires and 1D arrays fabrication: An overview , 2006 .

[38]  S. Kuwabata,et al.  A biomimetic phospholipid/alkanethiolate bilayer immobilizing uricase and an electron mediator on an Au electrode for amperometric determination of uric acid. , 1999, Analytical chemistry.

[39]  Qingliang Liao,et al.  Fabrication, structural characterization, and photoluminescence of Ga-doped ZnO nanobelts , 2009 .

[40]  Yue Zhang,et al.  A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for L-lactic acid detection. , 2012, Nanoscale.

[41]  O. Wolfbeis,et al.  Fully reversible optical biosensors for uric acid using oxygen transduction. , 2008, Biosensors & bioelectronics.

[42]  Charles M. Lieber,et al.  Response to Comment on "Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays" , 2009, Science.

[43]  Charles M. Lieber,et al.  Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. , 2010, Nano letters.