Understanding the Activation of Anionic Redox Chemistry in Ti4+-Substituted Li2MnO3 as a Cathode Material for Li-Ion Batteries

[1]  J. Tarascon,et al.  Retardation of Structure Densification by Increasing Covalency in Li-Rich Layered Oxide Positive Electrodes for Li-Ion Batteries , 2022, Chemistry of Materials.

[2]  J. Tarascon,et al.  Solid state chemistry for developing better metal-ion batteries , 2020, Nature Communications.

[3]  Z. Moradi,et al.  First‐principle study of doping effects (Ti, Cu, and Zn) on electrochemical performance of Li 2 MnO 3 cathode materials for lithium‐ion batteries , 2020 .

[4]  A. Grimaud,et al.  Assessing the Oxidation Behavior of EC:DMC Based Electrolyte on Non-Catalytically Active Surface , 2020, Journal of The Electrochemical Society.

[5]  V. Pol,et al.  Enhancing electrochemical performance of thin film lithium ion battery via introducing tilted metal nanopillars as effective current collectors , 2020, Nano Energy.

[6]  Y. Huang,et al.  Molecular dynamics study on the Li diffusion mechanism and delithiation process of Li2MnO3 , 2019, Solid State Ionics.

[7]  Liquan Chen,et al.  Li–Ti Cation Mixing Enhanced Structural and Performance Stability of Li‐Rich Layered Oxide , 2019, Advanced Energy Materials.

[8]  Lakshmi-Narayana,et al.  Transport Properties of Nanostructured Li2TiO3 Anode Material Synthesized by Hydrothermal Method , 2019, Sci.

[9]  D. Carlier,et al.  DFT-Assisted Solid-State NMR Characterization of Defects in Li2MnO3. , 2019, Inorganic chemistry.

[10]  M. Ben Yahia,et al.  Unified picture of anionic redox in Li/Na-ion batteries , 2019, Nature Materials.

[11]  A. Gowen,et al.  Characterisation of titanium oxide layers using Raman spectroscopy and optical profilometry: Influence of oxide properties , 2019, Results in Physics.

[12]  B. Partoens,et al.  First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes , 2019, MRS Advances.

[13]  N. Yabuuchi Material Design Concept of Lithium-Excess Electrode Materials with Rocksalt-Related Structures for Rechargeable Non-Aqueous Batteries. , 2018, Chemical record.

[14]  Jean-Marie Tarascon,et al.  Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries , 2018 .

[15]  Ling Huang,et al.  Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry. , 2018, ACS applied materials & interfaces.

[16]  J. Tarascon,et al.  Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes , 2017, Nature Communications.

[17]  William E. Gent,et al.  Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides , 2017, Nature Communications.

[18]  A. Yamada,et al.  Molecular Orbital Principles of Oxygen-Redox Battery Electrodes. , 2017, ACS applied materials & interfaces.

[19]  G. Park,et al.  Overview of the Oxygen Behavior in the Degradation of Li2MnO3 Cathode Material , 2017 .

[20]  Wei Zhao,et al.  High performance Li 2 MnO 3 /rGO composite cathode for lithium ion batteries , 2017 .

[21]  R. Benedek,et al.  Simulation of First-Charge Oxygen-Dimerization and Mn-Migration in Li-Rich Layered Oxides xLi2MnO3·(1 – x)LiMO2 and Implications for Voltage Fade , 2017 .

[22]  Liquan Chen,et al.  Vacancy-induced MnO6 distortion and its impacts on structural transition of Li2MnO3. , 2017, Physical chemistry chemical physics : PCCP.

[23]  Amit Gupta,et al.  Electrochemical performances of Li-rich layered-layered Li2MnO3-LiMnO2 solid solutions as cathode material for lithium-ion batteries , 2017 .

[24]  Ying Xie,et al.  Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries , 2017 .

[25]  M. Islam,et al.  Lithium Extraction Mechanism in Li-Rich Li2MnO3 Involving Oxygen Hole Formation and Dimerization , 2016 .

[26]  K. Edström,et al.  Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. , 2016, Nature chemistry.

[27]  G. Ceder,et al.  The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. , 2016, Nature chemistry.

[28]  Zhenzhong Yang,et al.  Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries , 2016 .

[29]  Y. Ukyo,et al.  Dependence of Structural Defects in Li2MnO3 on Synthesis Temperature , 2016 .

[30]  James C. Knight,et al.  Formation and effect of orientation domains in layered oxide cathodes of lithium-ion batteries , 2016 .

[31]  Gerbrand Ceder,et al.  Computational understanding of Li-ion batteries , 2016 .

[32]  J. Tarascon,et al.  The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries , 2016 .

[33]  D. Abraham,et al.  On the Localized Nature of the Structural Transformations of Li2MnO3 Following Electrochemical Cycling , 2015 .

[34]  Guoying Chen,et al.  Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides , 2015, Nature Communications.

[35]  D. Wales,et al.  Mapping Structural Changes in Electrode Materials : Application of the Hybrid Eigenvector-Following Density Functional Theory (DFT) Method to Layered Li0.5MnO2 , 2015 .

[36]  H. Dixit,et al.  Correlating Local Structure with Electrochemical Activity in Li2MnO3 , 2015 .

[37]  R. Dedryvère,et al.  Role of propane sultone as an additive to improve the performance of a lithium-rich cathode material at a high potential , 2015 .

[38]  Christopher S. Johnson,et al.  First-charge instabilities of layered-layered lithium-ion-battery materials. , 2015, Physical chemistry chemical physics : PCCP.

[39]  T. Akita,et al.  Electron microscopy analysis of Ti-substituted Li2MnO3 positive electrode before and after carbothermal reduction , 2014 .

[40]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[41]  D. Aurbach,et al.  Phase Transitions in Li2MnO3 Electrodes at Various States-of-Charge , 2014 .

[42]  E. Zhecheva,et al.  Correlations between lithium local structure and electrochemistry of layered LiCo(1-2x)Ni(x)Mn(x)O2 oxides: 7Li MAS NMR and EPR studies. , 2014, Physical chemistry chemical physics : PCCP.

[43]  Liquan Chen,et al.  Atomic Structure of Li2MnO3 after Partial Delithiation and Re‐Lithiation , 2013 .

[44]  C. Delmas,et al.  Li1.20Mn0.54Co0.13Ni0.13O2 with Different Particle Sizes as Attractive Positive Electrode Materials for Lithium-Ion Batteries: Insights into Their Structure , 2012 .

[45]  C. Delmas,et al.  Reinvestigation of Li2MnO3 Structure: Electron Diffraction and High Resolution TEM , 2009 .

[46]  Y. Koyama,et al.  First-principles study on lithium removal from Li2MnO3 , 2009 .

[47]  G. Watson,et al.  A Density Functional Theory + U Study of Oxygen Vacancy Formation at the (110), (100), (101), and (001) Surfaces of Rutile TiO2 , 2009 .

[48]  J. D’Haen,et al.  An aqueous solution–gel citratoperoxo–Ti(IV) precursor: synthesis, gelation, thermo-oxidative decomposition and oxide crystallization , 2007 .

[49]  Y. Meng,et al.  High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution , 2005 .

[50]  C. Grey,et al.  NMR studies of cathode materials for lithium-ion rechargeable batteries. , 2004, Chemical reviews.

[51]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[52]  C. Delmas,et al.  6Li and 7Li NMR in the LiNi1-yCoyO2 Solid Solution (0 .ltoreq. y .ltoreq. 1) , 1995 .

[53]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[54]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[55]  U. Balachandran,et al.  Raman spectra of titanium dioxide , 1982 .

[56]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[57]  R. Benedek First-Cycle Simulation for Li-Rich Layered Oxide Cathode MaterialxLi2MnO3⋅(1-x)LiMO2(x= 0.4) , 2018 .

[58]  M. Tabuchi,et al.  Synthesis of high-capacity Ti- and/or Fe-substituted Li2MnO3 positive electrode materials with high initial cycle efficiency by application of the carbothermal reduction method , 2013 .

[59]  Kevin G. Gallagher,et al.  Countering the Voltage Decay in High Capacity xLi2MnO3•(1–x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries , 2012 .

[60]  Y. Wang,et al.  Electrical conductivity and 6,7Li NMR studies of Li1 + yCoO2 , 1997 .