Diffusion processes in demographic transitions: a prospect on using multi agent simulation to explore the role of cognitive strategies and social interactions

Multi agent simulation (MAS) is a tool that can be used to explore the dynamics of different systems. Considering that many demographic phenomena have roots in individual choice behaviour and social interactions it is important that this behaviour is being translated in agent rules. Several behaviour theories are relevant in this context, and hence there is a necessity of using a meta-theory of behaviour as a framework for the development of agent rules. The consumat approach provides a basis for such a framework, as is demonstrated with a discussion of modelling the diffusion of contraceptives. These diffusion processes are strongly influenced by social processes and cognitive strategies. Different possible research lines are discussed which might be addressed with a multi-agent approach like the consumats.

[1]  R. Hegselmann,et al.  Simulating Social Phenomena , 1997 .

[2]  David M. Messick,et al.  Frontiers in Social Dilemmas Research , 1996 .

[3]  Gn Gilbert,et al.  Simulating societies: an introduction , 1994 .

[4]  Nigel Gilbert,et al.  Simulating Societies : The Computer Simulation of Social Phenomena , 1995 .

[5]  G. Marwell,et al.  The critical mass in collective action , 1993 .

[6]  Robert Axelrod Advancing the art of simulation in the social sciences , 1997 .

[7]  I. Ajzen The theory of planned behavior , 1991 .

[8]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[9]  Allen Newell,et al.  Elements of a theory of human problem solving. , 1958 .

[10]  H. Reed,et al.  The Role of Diffusion Processes in Fertility Change in Developing Countries , 1999 .

[11]  P. Molander The Optimal Level of Generosity in a Selfish, Uncertain Environment , 1985 .

[12]  B. D. Bruijn Foundations of demographic theory , 1999 .

[13]  S. Tolnay The spatial diffusion of fertility: a cross-sectional analysis of counties in the American South, 1940 , 1995 .

[14]  M. Montgomery,et al.  Social networks and the diffusion of fertility control , 1998 .

[15]  G. Marwell,et al.  The critical mass in collective action : a micro-social theory , 1993 .

[16]  Steven Durlauf Growing artificial societies , 1997, Complex..

[17]  B. D. Bruijn Foundations of Demographic Theory: Choice, Process, Context , 1999 .

[18]  M. Potts Findings from Two Decades of Family Planning Research , 1995 .

[19]  E. Rogers Diffusion of Innovations , 1962 .

[20]  L. Festinger A Theory of Social Comparison Processes , 1954 .

[21]  Robin R. Vallacher,et al.  The chaos in social psychology. , 1994 .

[22]  D. Hall,et al.  Handbook of Career Theory , 1989 .

[23]  H. Zur,et al.  The effect of time pressure on risky choice behavior , 1981 .

[24]  Wim B. G. Liebrand,et al.  Computer Simulation of Cooperative Decision Making , 1996 .

[25]  E. Rogers Diffusion of Innovations, Fourth Edition , 1982 .

[26]  Wander Jager,et al.  Faculteit Der Economische Wetenschappen En Econometric Serie Research Memoranda Fashions, Habits and Changing Preferences: Simulations of Psychological Factors Affecting Market Dynamics Fashions, Habits and Changing Preferences: Simulation of Psychological Factors Affecting Market Dynamics , 2022 .

[27]  Peter Wright The harassed decision maker: Time pressures, distractions, and the use of evidence. , 1974 .

[28]  Robin R. Vallacher,et al.  Dynamical Systems in Social Psychology , 1994 .

[29]  C. Badcock,et al.  Simulating Societies: The Computer Simulation of Social Phenomena , 1995 .

[30]  Wander Jager,et al.  Stimulating diffusion of green products , 2002 .

[31]  C. Vlek,et al.  Behaviour in commons dilemmas: Homo economicus and Homo psychologicus in an ecological-economic model , 2000 .

[32]  A. Bandura Social Foundations of Thought and Action: A Social Cognitive Theory , 1985 .

[33]  Terence R. Mitchell,et al.  A cost-benefit mechanism for selecting problem-solving strategies: Some extensions and empirical tests , 1982 .

[34]  Robert Axelrod,et al.  Advancing the art of simulation in the social sciences , 1997, Complex..

[35]  M. Nowak,et al.  Tit for tat in heterogeneous populations , 1992, Nature.

[36]  Michael W. Macy,et al.  Natural Selection and Social Learning in Prisoner's Dilemma: Coadaptation with Genetic Algorithms and Artificial Neural Networks , 1996 .

[37]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[38]  W. Hamilton,et al.  The evolution of cooperation. , 1984, Science.

[39]  N. Gilbert,et al.  Artificial Societies: The Computer Simulation of Social Life , 1995 .

[40]  W. Jager Modelling consumer behaviour , 2000 .

[41]  Christopher G. Langton,et al.  Cooperation and Community Structure in Artificial Ecosystems , 1997 .

[42]  B. Latané The psychology of social impact. , 1981 .

[43]  G. Nigel Gilbert,et al.  Simulation for the social scientist , 1999 .

[44]  Icek Ajzen,et al.  From Intentions to Actions: A Theory of Planned Behavior , 1985 .

[45]  Brian C. O'Neill,et al.  Population and Climate Change , 2000 .

[46]  A. Tversky Elimination by aspects: A theory of choice. , 1972 .

[47]  R. Axelrod More Effective Choice in the Prisoner's Dilemma , 1980 .

[48]  T. Wallsten,et al.  Processing probabilistic multidimensional information for decisions. , 1982 .

[49]  A. Bandura Social learning theory , 1977 .

[50]  A. Tversky Intransitivity of preferences. , 1969 .

[51]  H. Simon,et al.  A Behavioral Model of Rational Choice , 1955 .

[52]  M. Montgomery,et al.  The diffusion of fertility control in Taiwan: evidence from pooled cross-section time-series models. , 1993, Population studies.

[53]  M. Macy Natural Selection and Social Learning in Prisoner's Dilemma , 1996 .

[54]  J. T. Fawcett The satisfaction and costs of children : theories, concepts, methods , 1972 .

[55]  Wander Jager,et al.  Consumats in a common dilemma. Testing the behavioural rules of simulated consumers , 1999 .

[56]  Mats G. Nordahl,et al.  Cooperation and Community Structure in Artificial Ecosystems , 1993, Artificial Life.

[57]  H. Simon,et al.  Theories of Decision-Making in Economics and Behavioural Science , 1966 .

[58]  M. Augier,et al.  Administrative Behavior: A Study of Decision‐Making Processes in Administrative Organizations , 2002 .

[59]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[60]  E. Frankenberg,et al.  Findings from Two Decades of Family Planning Research , 1993 .

[61]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.