Terahertz Metasurfaces for Absorber or Reflectarray Applications

A terahertz (THz) metasurface, with the unit cells consisting of double metal loops and a metallic back film on both sides of the dielectric layer, is investigated to find the connection between reflectivity and pattern geometry. An equivalent circuit of the unit cell is also given to ease the analysis and predication of the reflection coefficient and also to provide a guideline for tuning the impedance of the metasurface. An absorber and a reflectarray, as two typical applications of the metasurface that need low and high reflection efficiency, respectively, are demonstrated at ~0.9 THz by varying dimensional parameters of the metal loops. The absorber can reach 0.102-THz bandwidth for reflectivity below -10 dB under normal incidence and also shows independence on polarization and incident angle, while the reflectarray antenna gain can reach 22 dBi at 0.875 THz. Finally, an absorber and a reflective surface prototype were fabricated and measured. Factors affecting the reflectivity and resonances introduced in the fabrication process are identified, which provides an important reference to design other kinds of THz devices.

[1]  Markku Sipilä,et al.  Near-field measurements of submillimeter-wave reflectarrays , 2013, Defense, Security, and Sensing.

[2]  Khalil H. Sayidmarie,et al.  Investigations Into Phase Characteristics of a Single-Layer Reflectarray Employing Patch or Ring Elements of Variable Size , 2008, IEEE Transactions on Antennas and Propagation.

[3]  Xiangyu Cao,et al.  Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances , 2014 .

[4]  Jianqiang Gu,et al.  Increased frequency shifts in high aspect ratio terahertz split ring resonators , 2009 .

[5]  Herve Legay,et al.  Dual-band Ka/X reflectarray with broadband loop elements , 2010 .

[6]  Xiang Zhai,et al.  Tunable bandwidth of the terahertz metamaterial absorber , 2014 .

[7]  Sung-Soo Kim,et al.  Design of wide-bandwidth electromagnetic wave absorbers using the inductance and capacitance of a square loop-frequency selective surface calculated from an equivalent circuit model , 2016 .

[8]  Shaoqiu Xiao,et al.  On the Design of Single-Layer Circuit Analog Absorber Using Double-Square-Loop Array , 2013, IEEE Transactions on Antennas and Propagation.

[9]  A. Mohan,et al.  Ultrathin polarization independent absorber with enhanced bandwidth by incorporating giusepe peano fractal in square ring , 2015 .

[10]  M. Rahm,et al.  Metamaterial-based gradient index lens with strong focusing in the THz frequency range. , 2010, Optics express.

[11]  Atef Z. Elsherbeni,et al.  Aperture efficiency analysis of reflectarray antennas , 2010 .

[12]  J. Shaker,et al.  Broadband Design of a Single Layer Large Reflectarray Using Multi Cross Loop Elements , 2009, IEEE Transactions on Antennas and Propagation.

[13]  Qiang Chen,et al.  An X-Band Reflectarray With Novel Elements and Enhanced Bandwidth , 2013, IEEE Antennas and Wireless Propagation Letters.

[14]  J. A. Amusan,et al.  Electrical Characterization of Vacuum Thermally Deposited Aluminium Thin Film , 2010 .

[15]  J. Perruisseau-Carrier,et al.  Reflectarray Antenna at Terahertz Using Graphene , 2013, IEEE Antennas and Wireless Propagation Letters.

[16]  Xiaomei Yu,et al.  Broadband Terahertz Metamaterial Absorber Based on Asymmetric Resonators With Perfect Absorption , 2015, IEEE Transactions on Terahertz Science and Technology.

[17]  D. Cumming,et al.  A terahertz polarization insensitive dual band metamaterial absorber. , 2011, Optics letters.

[18]  Weili Zhang,et al.  Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces , 2015 .

[19]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[20]  Christophe Fumeaux,et al.  Reflectarray antennas for terahertz communications , 2012 .

[21]  Mingyao Xia,et al.  Design of a K‐band reflectarray antenna using double square ring elements , 2012 .

[22]  Christophe Fumeaux,et al.  Experimental demonstration of reflectarray antennas at terahertz frequencies. , 2012, Optics express.

[23]  Sergei A. Tretyakov,et al.  Contemporary notes on metamaterials , 2007 .

[24]  Shi-ning Zhu,et al.  Negative refraction with magnetic resonance in a metallic double-ring metamaterial , 2008 .

[25]  Derek Abbott,et al.  Terahertz reflectarray as a polarizing beam splitter. , 2014, Optics express.

[26]  Zhongxiang Shen,et al.  A Thin and Broadband Absorber Using Double-Square Loops , 2007, IEEE Antennas and Wireless Propagation Letters.

[27]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[28]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[29]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[30]  D. Grischkowsky,et al.  Terahertz conductivity of thin metal films , 2008 .

[32]  Xiu Yin Zhang,et al.  Single-Layer Dual-Band Reflectarray With Single Linear Polarization , 2014 .

[33]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[34]  T. Cui,et al.  Polarization-independent wide-angle triple-band metamaterial absorber. , 2011, Optics express.

[35]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[36]  Shi-Wei Qu,et al.  Controlling Dispersion Characteristics of Terahertz Metasurface , 2015, Scientific Reports.

[37]  D. Smith,et al.  Characterization of a planar artificial magnetic metamaterial surface. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  M. R. Chaharmir,et al.  Design of Broadband, Single Layer Dual-Band Large Reflectarray Using Multi Open Loop Elements , 2010, IEEE Transactions on Antennas and Propagation.

[39]  M. Cuhaci,et al.  A broadband reflectarray antenna with double square rings , 2006 .

[40]  Lei Zhou,et al.  Ultra-broadband terahertz metamaterial absorber , 2014 .