Identification of power system stabilizers locations

A methodology is presented for determining the number of power system stabilizers necessary to control a set of critical eigenvalues and to identify their optimal locations. The method is based on residues. A multimachine power system example is given to illustrate the proposed technique.<<ETX>>

[1]  O. H. Abdalla,et al.  Coordinated Stabilization of a Multimachine Power System , 1984, IEEE Power Engineering Review.

[2]  M. Tarokh Fixed modes in multivariable systems using constrained controllers , 1985, Autom..

[3]  José Ignacio Pérez Arriaga,et al.  Selective modal analysis with applications to electric power systems , 1981 .

[4]  L. Litz,et al.  Order Reduction of Linear State-Space Models Via Optimal Approximation of the Nondominant Modes , 1980 .

[5]  Ali Feliachi Decentralized stabilization of interconnected systems , 1986 .

[6]  R.J. Fleming,et al.  Selection of Parameters of Stabilizers in Multimachine Power Systems , 1981, IEEE Transactions on Power Apparatus and Systems.

[7]  D. R. Ostojic,et al.  Identification of optimum site for power system stabiliser applications , 1988 .

[8]  Ali Feliachi Linear Output Feedback Control , 1986, 1986 American Control Conference.

[9]  P.J. Nolan,et al.  Coordinated Application of Stabilizers in Multimachine Power Systems , 1980, IEEE Transactions on Power Apparatus and Systems.

[10]  Ali Feliachi Identification of critical modes in power systems , 1990 .

[11]  F. Schweppe,et al.  Selective Modal Analysis with Applications to Electric Power Systems, PART I: Heuristic Introduction , 1982, IEEE Transactions on Power Apparatus and Systems.

[12]  A. Feliachi Optimal Decentralized Load Frequency Control , 1987, IEEE Power Engineering Review.

[13]  James S. Thorp,et al.  Identification of optimum sites for power system stabilizer applications , 1990 .

[15]  T. Hiyama Coherency-based identification of optimum site for stabiliser applications , 1983 .