Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes.

The nonaqueous rechargeable lithium-O(2) battery containing an alkyl carbonate electrolyte discharges by formation of C(3)H(6)(OCO(2)Li)(2), Li(2)CO(3), HCO(2)Li, CH(3)CO(2)Li, CO(2), and H(2)O at the cathode, due to electrolyte decomposition. Charging involves oxidation of C(3)H(6)(OCO(2)Li)(2), Li(2)CO(3), HCO(2)Li, CH(3)CO(2)Li accompanied by CO(2) and H(2)O evolution. Mechanisms are proposed for the reactions on discharge and charge. The different pathways for discharge and charge are consistent with the widely observed voltage gap in Li-O(2) cells. Oxidation of C(3)H(6)(OCO(2)Li)(2) involves terminal carbonate groups leaving behind the OC(3)H(6)O moiety that reacts to form a thick gel on the Li anode. Li(2)CO(3), HCO(2)Li, CH(3)CO(2)Li, and C(3)H(6)(OCO(2)Li)(2) accumulate in the cathode on cycling correlating with capacity fading and cell failure. The latter is compounded by continuous consumption of the electrolyte on each discharge.

[1]  Haoshen Zhou,et al.  A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy , 2010 .

[2]  J. Dahn,et al.  In Situ Study of Electrolyte Reactions in Secondary Lithium Cells , 1987 .

[3]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[4]  Zhen Wei,et al.  Polarization of Oxygen Electrode in Rechargeable Lithium Oxygen Batteries , 2010 .

[5]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[6]  D. T. Sawyer,et al.  Formation of reactive intermediates [ROOOOR] from the addition of superoxide ion (O2.-) to CCl4, CF3CCl3, PhCCl3, PhC(O)Cl, n-BuBr, and n-BuCl in acetonitrile. , 1988, Chemical research in toxicology.

[7]  D. Aurbach,et al.  The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems , 1989 .

[8]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[9]  Eugene A. Goodilin,et al.  Protected anodes for lithium-air batteries , 2011 .

[10]  Ping He,et al.  Preparation of mesocellular carbon foam and its application for lithium/oxygen battery , 2009 .

[11]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[12]  C. Hahn,et al.  Microelectrode Studies of the Reaction of Superoxide with Carbon Dioxide in Dimethyl Sulfoxide , 2001 .

[13]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[14]  Takashi Kuboki,et al.  Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte , 2005 .

[15]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[16]  Diana Golodnitsky,et al.  Parameter analysis of a practical lithium- and sodium-air electric vehicle battery , 2011 .

[17]  J. Valentine,et al.  Cleavage of esters by superoxide , 1976 .

[18]  H. Gasteiger,et al.  Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries , 2010 .

[19]  G. Gattow,et al.  Über Chalkogenolate. LXI. Untersuchungen über Halbester der Kohlensäure. 1. Darstellung und Eigenschaften von Monomethyl‐ und Monoäthylcarbonaten , 1973 .

[20]  Hubert A. Gasteiger,et al.  The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries , 2010 .

[21]  Mario Blanco,et al.  Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes , 2011 .

[22]  Petru Andrei,et al.  Some Possible Approaches for Improving the Energy Density of Li-air Batteries , 2010 .

[23]  Francesco Faglioni,et al.  Stability of lithium superoxide LiO2 in the gas phase: computational study of dimerization and disproportionation reactions. , 2010, The journal of physical chemistry. A.

[24]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[25]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[26]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[27]  R. Atkinson Atmospheric reactions of alkoxy and ?-hydroxyalkoxy radicals , 1997 .

[28]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[29]  Jiujun Zhang,et al.  Electro-Oxidation of Carbonate in Aqueous Solution on a Platinum Rotating Ring Disk Electrode , 2005 .

[30]  Doron Aurbach,et al.  Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions , 1987 .

[31]  Wu Xu,et al.  Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries , 2010 .

[32]  D. T. Sawyer,et al.  Proton-induced disproportionation of superoxide ion in aprotic media , 1982 .

[33]  C. Westbrook,et al.  A Comprehensive Modeling Study of n-Heptane Oxidation , 1998 .

[34]  Ji‐Guang Zhang,et al.  Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes , 2011 .

[35]  P. Novák,et al.  Acetone as oxidative decomposition product in propylene carbonate containing battery electrolyte , 2005 .

[36]  J. Nørskov,et al.  Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. , 2010, The Journal of chemical physics.

[37]  Jeffrey Read,et al.  Discharge characteristic of a non-aqueous electrolyte Li/O2 battery , 2010 .

[38]  Doron Aurbach,et al.  The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts , 1991 .

[39]  D. T. Sawyer,et al.  Reactivity of superoxide ion with carbonyl compounds in aprotic solvents , 1979 .

[40]  Julian L. Roberts,et al.  Nucleophilic oxygenation of carbon dioxide by superoxide ion in aprotic media to form the peroxydicarbonate(2-) ion species , 1984 .

[41]  Murray J. Thomson,et al.  The chemical structures of opposed flow diffusion flames of C3 oxygenated hydrocarbons (isopropanol, dimethoxy methane, and dimethyl carbonate) and their mixtures , 2004 .

[42]  Sharon L. Blair,et al.  High-Capacity Lithium–Air Cathodes , 2009 .

[43]  M. Harun,et al.  Electrochemical studies on epoxidised natural rubber-based gel polymer electrolytes for lithium-air cells , 2008 .

[44]  Keith Scott,et al.  Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries , 2010 .

[45]  R. N. Mcdonald,et al.  Gas-phase ion-molecule reactions of dioxygen anion radical (O2-.bul.) , 1985 .

[46]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[47]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.