A novel parametrically controlled multi-scroll chaotic attractor along with electronic circuit design

Abstract.We propose a novel multi-scroll chaotic system captured through the Chua’s circuit. The novelty of our proposed multi-scroll system roots on the number of scrolls to be controlled by the parameters instead of changing the discontinuous functions repeatedly reported in the literature. We thoroughly investigate dynamical characteristics of the system using powerful tools of the nonlinear dynamic analysis including finite-time local Lyapunov exponents and bifurcation diagram. The practical feasibility of the proposed multi-scroll system is revealed through its electronic realization with off-the-shelf components.

[1]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[2]  Qiang Lai,et al.  Research on a new 3D autonomous chaotic system with coexisting attractors , 2016 .

[3]  Chun-Lai Li,et al.  A Ring-scroll Chua System , 2013, Int. J. Bifurc. Chaos.

[4]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[5]  Leon O. Chua,et al.  Scenario of the Birth of Hidden Attractors in the Chua Circuit , 2017, Int. J. Bifurc. Chaos.

[6]  Guanrong Chen,et al.  Generation of n-scroll attractors via sine function , 2001 .

[7]  Ana Dalia Pano-Azucena,et al.  Arduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators , 2016, Nonlinear Dynamics.

[8]  Guangyi Wang,et al.  Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria , 2018, Commun. Nonlinear Sci. Numer. Simul..

[9]  Carlos Sánchez-López,et al.  Integrated circuit generating 3- and 5-scroll attractors , 2012 .

[10]  Nikolay V. Kuznetsov,et al.  Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE , 2017, Commun. Nonlinear Sci. Numer. Simul..

[11]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[12]  Tomasz Kapitaniak,et al.  Evaluation of the largest Lyapunov exponent in dynamical systems with time delay , 2005 .

[13]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[14]  Lei Chen,et al.  Circuit implementation and model of a new multi‐scroll chaotic system , 2014, Int. J. Circuit Theory Appl..

[15]  Julien Clinton Sprott,et al.  A Proposed Standard for the Publication of New Chaotic Systems , 2011, Int. J. Bifurc. Chaos.

[16]  Nikolay V. Kuznetsov,et al.  Hidden chaotic sets in a Hopfield neural system , 2017 .

[17]  Pei Yu,et al.  Chaos control and chaos synchronization for multi-scroll chaotic attractors generated using hyperbolic functions , 2010 .

[18]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[19]  J. Suykens,et al.  Generation of n-double scrolls (n=1, 2, 3, 4,...) , 1993 .

[20]  Viet-Thanh Pham,et al.  Multiscroll Chaotic Sea Obtained from a Simple 3D System Without Equilibrium , 2016, Int. J. Bifurc. Chaos.

[21]  Esteban Tlelo-Cuautle,et al.  Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators , 2014 .

[22]  Jun Ma,et al.  Pattern Selection in Network of Coupled Multi-Scroll Attractors , 2016, PloS one.

[23]  Qiang Lai,et al.  Chaos, bifurcation, coexisting attractors and circuit design of a three-dimensional continuous autonomous system , 2016 .

[24]  Xinghuo Yu,et al.  Design and analysis of multiscroll chaotic attractors from saturated function series , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  E. Tlelo-Cuautle,et al.  Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs , 2016 .

[26]  T. N. Mokaev,et al.  Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system , 2015, 1504.04723.

[27]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[28]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[29]  Leon O. Chua,et al.  The double scroll , 1985 .

[30]  N. Kuznetsov,et al.  The Lyapunov dimension and its estimation via the Leonov method , 2016, 1602.05410.

[31]  Xinghuo Yu,et al.  Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method , 2004, Autom..

[32]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[33]  Sergej Celikovský,et al.  Hyperchaotic encryption based on multi-scroll piecewise linear systems , 2015, Appl. Math. Comput..

[34]  Guanrong Chen,et al.  Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system , 2015, 1511.07765.

[35]  Kehui Sun,et al.  High-Order Grid Multiscroll Chaotic Attractors Generated by the Second-Generation Current Conveyor Circuit , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[36]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[37]  Tomasz Kapitaniak,et al.  Multistability: Uncovering hidden attractors , 2015, The European Physical Journal Special Topics.

[38]  R Femat,et al.  Multiscroll attractors by switching systems. , 2010, Chaos.

[39]  Przemyslaw Perlikowski,et al.  Multistability and Rare attractors in van der Pol-Duffing oscillator , 2011, Int. J. Bifurc. Chaos.

[40]  Nikolay V. Kuznetsov,et al.  Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor , 2014, Commun. Nonlinear Sci. Numer. Simul..

[41]  Lin Wang,et al.  3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system , 2009 .

[42]  Runtong Chu,et al.  Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice , 2014 .

[43]  E. E. García-Guerrero,et al.  Synchronization of Chua’s circuits with multi-scroll attractors: Application to communication , 2009 .

[44]  Jesus M. Munoz-Pacheco,et al.  Frequency limitations in generating multi-scroll chaotic attractors using CFOAs , 2014 .

[45]  Fa-Qiang Wang,et al.  GENERATION OF MULTI-SCROLL CHAOTIC ATTRACTORS VIA THE SAW-TOOTH FUNCTION , 2008 .

[46]  Bashir Ahmad,et al.  Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor , 2018, PloS one.

[47]  Huagan Wu,et al.  Controlling extreme multistability of memristor emulator-based dynamical circuit in flux–charge domain , 2018 .

[48]  José-Cruz Nuñez Pérez,et al.  FPGA realization of multi-scroll chaotic oscillators , 2015, Commun. Nonlinear Sci. Numer. Simul..

[49]  I. Campos-Cantón,et al.  A parameterized family of single-double-triple-scroll chaotic oscillations , 2008 .