Contextualization in Mobile Robots

In this paper, we analyze some work on mobile robots with the goal of highlighting the use of contextual information to obtain a flexible and robust performance of the system. In particular, we analyzed the use of context in different robotic tasks, ranging from robot behavior to perception, and then propose to characterize this process of “contextualization” as a design pattern. As a result we argue that many different tasks indeed can exploit contextual information and, therefore, a single explicit representation of this information may lead to significant advantages both in the design and in the performance.

[1]  Wolfram Burgard,et al.  Speeding-up multi-robot exploration by considering semantic place information , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[2]  Henrik I. Christensen,et al.  Clarification dialogues in human-augmented mapping , 2006, HRI '06.

[3]  Wolfram Burgard,et al.  Integrated, plan-based control of autonomous robot in human environments , 2001, IEEE Intelligent Systems.

[4]  Bertrand Zavidovique,et al.  On the Importance of Being Contextual , 2006, Computer.

[5]  Wolfram Burgard,et al.  Supervised Learning of Topological Maps using Semantic Information Extracted from Range Data , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Lindsay Kleeman,et al.  Interactive SLAM using Laser and Advanced Sonar , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[7]  Wolfram Burgard,et al.  Multi-Level Surface Maps for Outdoor Terrain Mapping and Loop Closing , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Trevor Darrell,et al.  Contextual recognition of head gestures , 2005, ICMI '05.

[9]  Wolfram Burgard,et al.  Speeding-up rao-blackwellized SLAM , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[10]  James M. Rehg,et al.  Traversability classification using unsupervised on-line visual learning for outdoor robot navigation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[11]  Luca Iocchi,et al.  Human Posture Tracking and Classification through Stereo Vision and 3D Model Matching , 2008, EURASIP J. Image Video Process..

[12]  Cipriano Galindo,et al.  Multi-hierarchical semantic maps for mobile robotics , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Ève Coste-Manière,et al.  Architecture, the backbone of robotic systems , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[14]  Roy M. Turner,et al.  Context-mediated behavior for intelligent agents , 1998, Int. J. Hum. Comput. Stud..

[15]  Paul Newman,et al.  Outdoor SLAM using visual appearance and laser ranging , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[16]  J. McCarthy,et al.  Formalizing Context (Expanded Notes) , 1994 .