Categorical Combinatorics for Innocent Strategies

We show how to construct the category of games and innocent strategies from a more primitive category of games. On that category we define a comonad and monad with the former distributing over the latter. Innocent strategies are the maps in the induced two-sided Kleisli category. Thus the problematic composition of innocent strategies reflects the use of the distributive law. The composition of simple strategies, and the combinatorics of pointers used to give the comonad and monad are themselves described in categorical terms. The notions of view and of legal play arise naturally in the explanation of the distributivity. The category-theoretic perspective provides a clear discipline for the necessary combinatorics.

[1]  C.-H. Luke Ong,et al.  On Model-Checking Trees Generated by Higher-Order Recursion Schemes , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[2]  Samson Abramsky,et al.  Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol with active expressions , 1996, Electron. Notes Theor. Comput. Sci..

[3]  Guy McCusker Games and definability for FPC , 1997, Bull. Symb. Log..

[4]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[5]  Paul-André Melliès Categorical models of linear logic revisited , 2002 .

[6]  John Power,et al.  Combining a monad and a comonad , 2002, Theor. Comput. Sci..

[7]  Samson Abramsky,et al.  Games for Recursive Types , 1994, Theory and Formal Methods.

[8]  Paul-André Melliès Asynchronous games 2: The true concurrency of innocence , 2006, Theor. Comput. Sci..

[9]  P. T. Johnstone,et al.  TOPOSES, TRIPLES AND THEORIES (Grundlehren der mathematischen Wissenschaften 278) , 1986 .

[10]  G. M. Kelly Elementary observations on 2-categorical limits , 1989, Bulletin of the Australian Mathematical Society.

[11]  S. Lack,et al.  The formal theory of monads II , 2002 .

[12]  Russell Harmer,et al.  The Anatomy of Innocence Revisited , 2006, FSTTCS.

[13]  Paul-André Melliès,et al.  Asynchronous games 2: The true concurrency of innocence , 2006, Theor. Comput. Sci..

[14]  Martin Hyland Semantics and Logics of Computation: Game Semantics , 1997 .

[15]  Olivier Laurent Classical isomorphisms of types , 2005, Math. Struct. Comput. Sci..

[16]  M. Hyland,et al.  Games on graphs and sequentially realizable functionals. Extended abstract , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[17]  Russell Harmer,et al.  A fully abstract game semantics for finite nondeterminism , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[18]  Samson Abramsky,et al.  A fully abstract game semantics for general references , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[19]  Andrzej S. Murawski,et al.  Nominal games and full abstraction for the nu-calculus , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[20]  Rasmus Ejlers Møgelberg,et al.  Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science , 2007 .

[21]  Nick Benton,et al.  Linear Lambda-Calculus and Categorial Models Revisited , 1992, CSL.

[22]  Martin Hyland,et al.  Designs, Disputes and Strategies , 2002, CSL.

[23]  Andrzej S. Murawski,et al.  Idealized Algol with Ground Recursion, and DPDA Equivalence , 2005, ICALP.

[24]  MellièsPaul-André Asynchronous games 2 , 2006 .

[25]  Samuel Mimram,et al.  Asynchronous Games: Innocence Without Alternation , 2007, CONCUR.

[26]  C.-H. Luke Ong,et al.  On Full Abstraction for PCF: I, II, and III , 2000, Inf. Comput..

[27]  Andrzej S. Murawski,et al.  Applying Game Semantics to Compositional Software Modeling and Verification , 2004, TACAS.

[28]  Jean-Yves Girard,et al.  Locus Solum: From the rules of logic to the logic of rules , 2001, Mathematical Structures in Computer Science.

[29]  Martin Hyland,et al.  Games on Graphs and Sequentially Realizable Functionals , 2002, LICS 2002.

[30]  F. William Lawvere,et al.  Ordinal sums and equational doctrines , 1969 .

[31]  S. Lane Categories for the Working Mathematician , 1971 .

[32]  Martin Hyland,et al.  Abstract Games for Linear Logic , 1999, CTCS.

[33]  James Laird,et al.  Full abstraction for functional languages with control , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[34]  Gavin M. Bierman What is a Categorical Model of Intuitionistic Linear Logic? , 1995, TLCA.