Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2

[1]  Christian Stinner,et al.  Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions , 2011, 1112.6202.

[2]  Michael Winkler,et al.  Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system , 2011, 1112.4156.

[3]  Youshan Tao,et al.  Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity , 2011, 1106.5345.

[4]  Michael Winkler,et al.  Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect , 2010 .

[5]  Michael Winkler,et al.  Does a ‘volume‐filling effect’ always prevent chemotactic collapse? , 2010 .

[6]  Philippe Laurenccot,et al.  Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system , 2008, 0810.3369.

[7]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[8]  P. Laurençot,et al.  The 8π‐problem for radially symmetric solutions of a chemotaxis model in the plane , 2006 .

[9]  P. Laurençot,et al.  The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in a disc , 2006 .

[10]  T. Senba,et al.  A quasi-linear parabolic system of chemotaxis , 2006 .

[11]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[12]  M. A. Herrero,et al.  Singularity patterns in a chemotaxis model , 1996 .

[13]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[14]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[15]  N. Mizoguchi,et al.  A sufficient condition for type I blowup in a parabolic–elliptic system , 2011 .

[16]  Tomasz Cieślak The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below , 2006 .

[17]  Toshitaka Nagai,et al.  Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains , 2001 .

[18]  Piotr Biler,et al.  LOCAL AND GLOBAL SOLVABILITY OF SOME PARABOLIC SYSTEMS MODELLING CHEMOTAXIS , 1998 .

[19]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[20]  P. Biler,et al.  EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A MODEL OF GRAVITATIONAL INTERACTION OF PARTICLES , 2007 .

[21]  H. Amann Dynamic theory of quasilinear parabolic systems. III. Global existence (Erratum). , 1990 .