The effects of cementless femoral stem shape and proximal surface texture on ’fit-and-fill’ characteristics and on bone remodeling

Abstract We measured the post-operative radiological ”fit and fill” of two different femoral stem designs, one with a straight proximally porous-coated (Bi-Metric, n=50) and the other with a proximally anatomic, hydroxyapatite-coated and distally over-reamed stem (ABG, n=26). A comparison was then made between the clinical and radiological 5-year follow-up data of these two series and also of the bone remodeling changes around the stems. The observed differences in ”fit and fill” parameters in the metaphyseal region were minute. However, in the diaphyseal bone the straight stem had substantially more cortical contact. The clinical results were excellent for both groups. Subsidence (>2 mm) was more frequent with the anatomical ABG stems, although the ABG stems had better bone ingrowth in the lower metaphyseal area. The present results indicate that the anatomical design may improve the fit and fill of a femoral stem in the metaphysis. On the other hand, a looser fill of the diaphyseal bone made the stems of this type more susceptible to subsidence. The straight stem with tight diaphyseal fit showed excellent stability, but the good bone ingrowth and remodeling around the distal part of the stem indicates stress transfer through this region and increased stress shielding of the proximal metaphyseal femur.Résumé Nous avons mesuré l’adaptation et le remplissage radiographique postopératoire de deux modèles différents de tiges fémorales, une tige droite avec la porosité proximale (BI-Metric, n=50) et une tige proximalement anatomique revêtue d’hydroxyapatite avec un surfaçage distal (ABG, n=26). Nous avons comparé les renseignements cliniques et radiographiques de ces deux séries de données résultant d’un suivi de cinq ans. Le remodelage osseux autour des tiges a été pris en compte. Les différences observées dans les paramètres de l’adaptation et de remplissage dans la région métaphysaire étaient minimales. Par contre dans la région diaphysaire la tige droite faisait montre de plus de contact cortical et ceci d’une manière significative. Les résultats cliniques sur ces deux groupes furent excellents. L’enfoncement (>2 mm.) de tiges anatomiques ABG était plus fréquent. Les résultats présentés indiquent que le modèle anatomique pourrait améliorer l’adaptation et le remplissage de la tige fémorale dans la région de l’os métaphysaire.

[1]  J. M. Lee,et al.  Observations on the Effect of Movement on Bone Ingrowth into Porous‐Surfaced Implants , 1986, Clinical orthopaedics and related research.

[2]  R M Pilliar,et al.  The effect of movement on the bonding of porous metal to bone. , 1973, Journal of biomedical materials research.

[3]  L. Rosenthall,et al.  Temporal changes of periprosthetic bone density in patients with a modular noncemented femoral prosthesis. , 1999, The Journal of arthroplasty.

[4]  John A. Anderson,et al.  Hydroxyapatite‐Coated Hip Prostheses: Early Results From an International Study , 1995, Clinical orthopaedics and related research.

[5]  S. Cook,et al.  Clinical and roentgenographic evaluation of noncemented porous-coated anatomic medullary locking (AML) and porous-coated anatomic (PCA) total hip arthroplasties. , 1990, Clinical orthopaedics and related research.

[6]  H. Amstutz,et al.  "Modes of failure" of cemented stem-type femoral components: a radiographic analysis of loosening. , 1979, Clinical orthopaedics and related research.

[7]  Y.H. Kim,et al.  Uncemented porous-coated anatomic total hip replacement , 1993 .

[8]  Y. Kim,et al.  Cementless porous-coated anatomic medullary locking total hip prostheses. , 1994, The Journal of arthroplasty.

[9]  C. Engh,et al.  Long-Term Results of Use of the Anatomic Medullary Locking Prosthesis in Total Hip Arthroplasty* , 1997, The Journal of bone and joint surgery. American volume.

[10]  R Poss,et al.  Clinical and radiographic evaluation of total hip replacement. A standard system of terminology for reporting results. , 1990, The Journal of bone and joint surgery. American volume.

[11]  I. Hvid,et al.  Gap healing enhanced by hydroxyapatite coating in dogs. , 1991, Clinical orthopaedics and related research.

[12]  P. Rossi,et al.  Short‐Term Results of Hydroxyapatite‐Coated Primary Total Hip Arthroplasty , 1995, Clinical orthopaedics and related research.

[13]  M. Freeman,et al.  RADIOLOGICAL AND SURVIVAL COMPARISON OF FOUR METHODS OF FIXATION OF A PROXIMAL FEMORAL STEM , 1997 .

[14]  R. Huiskes,et al.  Failed innovation in total hip replacement. Diagnosis and proposals for a cure. , 1993, Acta orthopaedica Scandinavica.

[15]  J O Galante,et al.  Primary total hip reconstruction with a titanium fiber-coated prosthesis inserted without cement. , 1993, The Journal of bone and joint surgery. American volume.

[16]  J. Knight,et al.  Clinical results of the midstem porous-coated anatomic uncemented femoral stem in primary total hip arthroplasty: a five- to nine-year prospective study. , 1998, The Journal of arthroplasty.

[17]  Love Br,et al.  A femoral component inserted without cement in total hip arthroplasty. A study of the Tri-Lock component with an average ten-year duration of follow-up. , 1999 .

[18]  R. Wixson,et al.  Maintenance of proximal bone mass with an uncemented femoral stem analysis with dual-energy x-ray absorptiometry. , 1997, The Journal of arthroplasty.

[19]  R. Eberle,et al.  DUAL-ENERGY X-RAY ABSORPTIOMETRY MEASUREMENT OF BONE MINERAL DENSITY AROUND POROUS-COATED CEMENTLESS FEMORAL IMPLANTS , 1993 .

[20]  P. Leyvraz,et al.  Three-dimensional morphology of the proximal femur. , 1997, The Journal of arthroplasty.

[21]  R L Wixson,et al.  The rationale, design characteristics, and preliminary results of a primary custom total hip prosthesis. , 1989, Clinical orthopaedics and related research.

[22]  R. Geesink,et al.  Six-year results of hydroxyapatite-coated total hip replacement. , 1995, The Journal of bone and joint surgery. British volume.

[23]  J. Callaghan,et al.  The porous-coated anatomic total hip prosthesis, inserted without cement. A prospective study with a minimum of ten years of follow-up. , 1999, The Journal of bone and joint surgery. American volume.

[24]  P. Herberts,et al.  Long-term clinical and radiological results of the Lord total hip prosthesis , 1996 .

[25]  P S Walker,et al.  Relative motion of hip stems under load. An in vitro study of symmetrical, asymmetrical, and custom asymmetrical designs. , 1994, The Journal of bone and joint surgery. American volume.

[26]  R B Bourne,et al.  Early radiographic results comparing cemented and cementless total hip arthroplasty. , 1996, The Journal of arthroplasty.

[27]  H Weinans,et al.  Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling. , 1994, Journal of biomechanical engineering.

[28]  C. Engh,et al.  The case for porous-coated hip implants. The femoral side. , 1990, Clinical orthopaedics and related research.

[29]  W. Hozack,et al.  Primary Cementless Hip Arthroplasty With a Titanium Plasma Sprayed Prosthesis , 1996, Clinical orthopaedics and related research.

[30]  G. Lausten,et al.  Changes in bone mineral density adjacent to two biomechanically different types of cementless femoral stems in total hip arthroplasty , 1998, International Orthopaedics.

[31]  S. S. Hughes,et al.  A collarless cobalt-chrome femoral component in uncemented total hip arthroplasty. Five- to eight-year follow-up. , 1992, The Journal of bone and joint surgery. British volume.

[32]  S. S. Hughes,et al.  Atrophy of the proximal part of the femur after total hip arthroplasty without cement. A quantitative comparison of cobalt-chromium and titanium femoral stems with use of dual x-ray absorptiometry. , 1995, The Journal of bone and joint surgery. American volume.

[33]  H. Tullos,et al.  The anatomic basis of femoral component design. , 1988, Clinical orthopaedics and related research.

[34]  T. Moilanen,et al.  Diversity of proximal femoral medullary canal. , 2000, The Journal of arthroplasty.

[35]  R. Huiskes,et al.  Preclinical testing of total hip stems. The effects of coating placement. , 1995, Clinical orthopaedics and related research.

[36]  C. Engh,et al.  Roentgenographic assessment of the biologic fixation of porous-surfaced femoral components. , 1990, Clinical orthopaedics and related research.

[37]  J J Callaghan,et al.  The effect of femoral stem geometry on interface motion in uncemented porous-coated total hip prostheses. Comparison of straight-stem and curved-stem designs. , 1992, The Journal of bone and joint surgery. American volume.

[38]  W. Hozack,et al.  Minimum 10-year results of a tapered cementless hip replacement. , 1999, Clinical orthopaedics and related research.

[39]  M. B. Coventry,et al.  Factors influencing the results in 2,012 total hip arthroplasties. , 1973, Clinical orthopaedics and related research.

[40]  R G Geesink,et al.  Hydroxyapatite-coated total hip prostheses. Two-year clinical and roentgenographic results of 100 cases. , 1990, Clinical orthopaedics and related research.

[41]  V. Goldberg,et al.  Clinical and radiographic outcomes of total hip arthroplasty with insertion of an anatomically designed femoral component without cement for the treatment of primary osteoarthritis. A study with a minimum of six years of follow-up. , 1999, The Journal of bone and joint surgery. American volume.

[42]  J. Callaghan,et al.  The porous-coated anatomic total hip prosthesis, inserted without cement. Results after five to seven years in a prospective study. , 1993, The Journal of bone and joint surgery. American volume.

[43]  P S Walker,et al.  Design and fabrication of cementless hip stems. , 1988, Clinical orthopaedics and related research.

[44]  W H Harris,et al.  Micromotion of cemented and uncemented femoral components. , 1991, The Journal of bone and joint surgery. British volume.

[45]  J. Hua,et al.  Closeness of fit of uncemented stems improves the strain distribution in the femur , 1995, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[46]  J. Mokris,et al.  Integral porous femoral stem. 5-to 8-Year follow-up study. , 1997, The Journal of arthroplasty.

[47]  A. Tonino,et al.  Rheumatoid arthritis and hydroxyapatite-coated hip prostheses: Five-year results , 1998 .

[48]  E. Vresilovic,et al.  Radiographic assessment of cementless femoral components. Correlation with intraoperative mechanical stability. , 1994, The Journal of arthroplasty.

[49]  P. Herberts,et al.  Scandinavian multicenter porous coated anatomic total hip arthroplasty study. Clinical and radiographic results with 7- to 10-year follow-up evaluation. , 1997, The Journal of arthroplasty.